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In a symmetric extension of the HOD of a universe in which all uncount-
able cardinals are singular, there exists a model containing all the reals and
satisfying "ADg +0O is regular".

1 Introduction

In his PhD thesis Gitik proved that there can exist models of Zermelo-Fraenkel set theory
in which all uncountable cardinals are singular. To do this he started from a model of
ZFC in which there exist proper class many strongly compact cardinals setting a high
upper bound for the consistency strength of this property. (See [Git80])

A few years later Arthur Apter proved a "local" version of Gitik’s Theorem, i.e. he
proved that given the consistency of ZF + AD there exists a model in which every un-
countable cardinal less than ©, the supremum of the length of pre-wellorders on R, is
singular. (See [Apt85])

Ralf Schindler and his student Daniel Busche, using the core model induction of
Woodin (see [SS]), have shown:

Theorem 1.1 (Busche-Schindler): AssumeV |= "All uncountable cardinals are singular”.
There 1s some cardinal p and some X C On s.t. ADY®) holds in HODx lg] for all
g C Col(w, i) generic over V.

See [Bus08] or respectively [BS09]. The proof actually gives that R exists in HOD [g],
thus establishing that Gitik’s "global" theorem is in fact stronger than Apter’s "local"
version.

Frankly, it is not surprising that a "local" property like AD does not yield a "global"
theorem. Ralf Schindler, in unpublished work, showed that in Gitik’s model there is an
inner model with proper class many Woodin cardinals. But even this "global" property
falls short. In this paper we will proof:

Theorem 1.2: Assume V = "All uncountable cardinals are singular”. There is some
cardinal 1 and some X C On s.t. in HODx [g] where g C Col(w, ) is generic over V
there exists some T' C P(RUOPxI9]) ith L(T, RHOPx) =7 ADg 4O is regular”.



Schindler and Busche’s proof was based on [Ste05|. Similarly, our proof, intitally,
will look a lot like [Sarl4]. To reach ” ADr +© is regular” we will need to use "j-
condensation" introduced in [Sar15| (in modern parlance we would use the term "condens-
ing set"). A example of a core model induction using "j-condensation" or "condensing
sets" can be found in [Tral.

This paper is organized thusly: the first section will introduce all the machinery needed
for the proof; the second section is dedicated to the construction of a "maximal model"
of 7AD+0 = 6y”; the third section will show how to get the next set beyond that
maximal model; the fourth section will talk about iterating this process in a sustainable
fashion; the fifth section will then use condensing sets to finish the proof of the theorem;
the sixth section is a small appendix in which we will talk about what problems we
face when trying to apply the machinery of [STa] to our problem and how to apply the
methods of this paper to some similar problems.

Work on this paper started while the author was DFG research scholar at UC Berkeley
under the project number AD 469 1/1. The basic outline was (essentially) finished while
the author was a visiting fellow at the Isaac Newton Institute for Mathematical Sciences in
the programme ‘Mathematical, Foundational and Computational Aspects of the Higher
Infinite’ (HIF). We would also like to thank John Steel and Grigor Sargsyan for some
conversations regarding earlier version of this paper.

2 Preliminaries

2.1 Solovay Sequence

Let M be a transitive model of ZF + AD. ©M refers to the supremum of pre-wellorders
on R in M. We will refine this notation. Define by induction a sequence of ordinals

(O : v < B):
e 0y :=sup{y|3f € ODM : f: R — };

01 :=sup{y|3f € ODY : f: R — ~} if thereis A € (P(R))M with Wadge-degree
0o (ie. iff 6, < ©) otherwise o = f3;

e 0, =supéb, if A limit.
a<A

The length of this so called Solovay sequence is a natural degree of consistency strength
for models of determinancy. At least at low levels every 6 corresponds to a strong cardinal
below a limit of Woodin cardinals:

Theorem 2.1 (Woodin): (a) The following theories are equiconsistent:

- "ZF+AD”;
— PZFC+3X : X is a limit of Woodin cardinals”.

(b) The following theories are equiconsistent:
_ VZF+AD 4O > 6,7 ;



— "ZFC+3k, A : X is a limit of Woodin cardinals |k is <A-strong”.

(c) The following theories are equiconsistent:
— "ZF+ADgr7;
— "ZFC+3X : X is limit of Woodin cardinals and <A-strong cardinals” .

One notices that compared to large cardinals this gives a rather coarse hierarchy. AD by
itself is equiconsistent with infinitely many Woodin cardinals, but AD 40 > 6 is already
far stronger consistency wise than a proper class of Woodin cardinals. Determinacy
theories strictly in between have so far not been extensively studied. (But see [Tral4])

O itself can exhibit large cardinal properties. In this paper we will produce models of
” ADR 40 is regular”. (In the HOD of such a model © will be an inaccessible limit of
Woodins.) It has been shown that this theory is weaker than the existence of a limit A
of Woodin cardinals and <A-strong cardinals with some x < A which reflects the set of
<A-strong cardinals. (G. Sargsyan and Y. Zhu, unpublished.)

2.2 lteration Strategies

We do except our readers to be familiar with the basic language of inner model theory
(see [MS94] or the handbook [Stel0]).

We say a premouse M is of Lp-type iff there is a set a s.t. M can be construed as an
a-premouse, it is sound above a and projects below a. If we have two Lp-type premice
M, N over a fixed a which can be compared then we’ll have M < N or N < M. Thus
all Lp-type premice of the right kind can be gathered into one structure usually referred
to as Lp(a).

We will make a distinction between two different kind of premice. The essential dif-
ference being the presence of a canonical well-order.

Definition 2.2: Let X, R, A be sets.

(a) X is self-wellordered iff J;(X) contains a wellorder on X.
(b) A premouse M over (R, A) is an R-premouse iff M = R=R and A C R.

Definition 2.3: (a) Let I' be a inductive-like, determined pointclass, a a set. Lp'(a)
is the union of Lp-type premice M over a s.t. all countable hulls of M have (w1, w1)
iteration strategies as coded by sets in T'.

(b) Let a be a set. Lp(a) is the union of Lp-type premice M over a s.t. all countable
hulls have an OD in X (wq,w)-iteration strategy for some set of ordinals X.

Remark: Comparisons in the case of (a) can be performed in L [T, M, N| where T is
the tree of a scale on an universal I'-set. In the case of (b) we can work in HODx. In all
contexts where we need to do this, we’ll have (wq)HOPx < wy.

Neither of these definitions is supposed to be applied in a ZFC-context. (a) obviously
presupposes a determinacy context and we will only use (b) in the context of our choiceless
home universe. In the course of the core model induction we will by necessity also work
in a ZFC-context.



During this process we will maintain that iteration strategies are of highest caliber.
This good breeding expresses itself in the form of condensation properties which we are
now going to list.

Definition 2.4: Let M, M be premice.

(a) Let 7,7 normal iteration trees on M and M respectively. We say T is a hull of 7
(as witnessed by (o, (mg : 8 < 1h(T))) iff:

o : dom(T) — dom(T) is order preserving, o(0) = 0;
— deg” (8) = deg” (a(8)), DT N(B,]7 = 0iff DT N (0(B), 0(v))7 for all B <7
in the domain of T;

— T Mg — MUT(/B) is a weak degf(ﬁ)—embedding;
T

— Ty O igﬁ = ly(8),0() © T8 Whenever § <z~ and DT N (B,4]+ = 0;

— let g := predf(’y + 1) then o(8) = pred” (o(y + 1)) and Tyr1(la, flgr) =
[my(a), 7 (f)] g

a(v)

(b) Let (T3 : B < @) and (T3 : B < ) be two stacks of normal trees on M and M
respectively. We say (T3 : 8 < @) is a hull of (T3 : 8 < «) (as witnessed by

(0,{05: B < a),(nd : B <@~y <1h(Tp)))) iff:
— 0 :a — «ais order preserving, o(0) = 0;

— Tp is a hull of T, sy as witnessed by (o3, (ﬂg : v < 1h(T3)).

Definition 2.5: Let M be a premouse and ¥ a (possibly partial) iteration strategy for
it. We say X has hull condensation iff for all stacks of normal trees 7,S on M, if T is
by > and S is a hull of 7 then S, too, is by X.

Remark: Let M be a premouse and X a strategy with hull condensation. Let T be a
stack of normal trees on M by 3, let S be a hull of T as witnessed by (o,{(og : B <
h(S)), (72 : B < 1h(S), 7 < 1n(S5))) then S is by L.
Definition 2.6: Let M be a premouse and ¥ a (possibly partial) iteration strategy for
it. We say X has branch condensation iff it has hull condensation and if there are N,
a Y-iterate with iteration embedding w : M — N, and T a stack of normal trees by ¥
together with a cofinal branch b s.t. the branch embedding iZ' exists and there exists
7:M] — N with 7 0] =, then b= X(T).

Let M be a premouse and X an iteration strategy on it. Let T be a tree on M by X
with last model N. We then write 37 y for the induced strategy on V.
Definition 2.7: Let M be a premouse and X an iteration strategy on it.

(a) X is positional iff ¥ 7 = X s for all trees 7,S by ¥ with last model N.

(b) X is pullback consistent iff Eil\?’f agrees with ¥ on the intersection of their domains
for all trees 7 on M by ¥ with last model N and iteration embedding i’ : M — N.



(¢) ¥ has the weak Dodd-Jensen property iff i7 = i for all trees 7,S by X with last
S

model N and iteration embeddings i7,iS.
If a strategy X is positional we can then justifiably write ¥ for the induced embedding
of any iterate V.
Remark: If M is a Lp-type mouse over a the iteration strategy ¥ of M above a is
unique. From this it is not hard to see that X will have all the listed condensation
properties.

We will now state a very general form of "generic iterability".
Definition 2.8: Let X C On. Let M € HODx be a premouse, a an ordinal or On. We
say M is generically (o, a)-iterable iff

(a) M has an ODx (o, «)-iteration strategy ¥ with hull condensation;

(b) there exists some first order formula ¢ and parameter p € HODx s.t (-, P,p)
defines an (o, «)-iteration strategy 3¢9 with hull condensation for any g generic
over V for a forcing notion P of size <a.

We have included the requirement for ¥ to have hull condensation out of pure con-
venience. In application we do not want to have to make explicit that 39 has hull
condensation, and we do not see how it is implied abstractly by % having hull conden-
sation. Also note that in (b) it is implied that P can be well-ordered. In this paper we
will generally only apply this definition to Levy collapses.

In applications we will need a stronger notion. We will need to know that generic

extensions of strategies are consistent across mutually generic extensions.
Definition 2.9: Let X C On. Let M € HODx be a premouse, a an ordinal or On.
We say M is strongly generically (o, «)-iterable iff it is generically («a, «)-iterable and
in addition for any g generic over V for a forcing notion of size <« and hg,h; € V [g]
s.t. both are generic over V for a forcing notion of size <o we have that %0 and M
agree on the intersection of their domains where X are the extensions given by generic
iterability.

Fortunately, in many cases there is no difference between these two notions.

Lemma 2.10: Let M be Lp-type that is generically (On, On)-iterable. Then M is strongly
generically (On, On)-iterable.

PROOF: Let hg, hi,g as in the definition. W.l.o.g. assume that g is generic for Col(w, ),
some a. We can find gg, g1 C Col(w, ) generic over V [ho] and V [h1] respectively s.t.

V [ho] [g0] = V [g] = V [h] [91] -

Now by homogeneity the restriction of X9 to V' [h,] is definable over that model as the

unique strategy of M in some Col(w, ) generic extension. By uniqueness of iteration
strategies on M we thus have X% = %9 | V [h;]. Q.E.D. 4

Remark: All our core model operators and HOD pairs will be strongly generically
(On, On)-iterable.



For cases not covered by the above lemma we will also have a use for a stronger notion

which lends itself to "reflection" arguments. Unfortunately, it depends on choice but it
will still prove quite useful.
Definition 2.11 (ZFC): Let M be a countable premouse and let ¥ be an (a,a)-
iteration strategy with hull condensation for M (up to o). We say ¥ strongly determines
itself on generic extensions iff there exists a formula ¢, a parameter § and a club class
C s.t. for all § € C there exists a stationary set Sg on P, (Hg) s.t. for all X € Sg
we have p, M € X and if 7 : X — H is the transitive collapse and P € H is such that
H |= Card(P) < m(«a) and g C P is generic over H then 7(H,) [g] is closed under ¥ and
o(+,P,7(p)) defines ¥ | m(Hq) [g] over H [g]. (In case o = On we set w(Hy) := H.)

Definition 2.12 (ZFC): Let M be a premouse and let ¥ be an («, «)-iteration strategy
with hull condensation for M (up to o). We say 3 determines itself on generic extensions
iff for some positive ordinal § there exists a Col(w, )-name Y and a parameter  s.t.
IFCol(w,8) " C X is a (@&, d)-iteration strategy with hull condensation for M s.t. %

determines itself on generic extensions up to ¢ as witnessed by p".

Remark: Note that this is not quite the same definition as in [STh| as that definition
depends on M 12 # and that won’t do for our purposes. As we will see we will need generic
iterability for ¥ to get M>7 in the first place. It is not hard to see that our version is
strictly weaker, so we will be able to use some results from that paper.

Lemma 2.13 (ZFC): Let M be a premouse, let ¥ be a (o, «)-iteration strategy with
hull condensation for M which determines itself on generic extensions up to o, then M
is strongly generically (o, a)-iterable.

PrROOF: Using homogeneity we can w.l.o.g. assume that 3 = 1 and ¥ := %9 (g =0)
strongly determines itself on generic extensions.

Let P be some partial order of size <a. Let ¢, p, C' be as in the definition of "strongly
determines itself on generic extensions". Let 8 € C be sufficiently big s.t. p,P € Hpg.

Now assume for a contradiction that some p € P forces that (-, [P, p) does not define
the wanted extension. Let now X € Sg be sufficiently elementary with p € X. Let then
7w : X — H be the transitive collapse. Let g C 7m(P) be generic over H with 7(p) € g.

We then have that ¢(-, 7(P), 7(p)) defines £, := ¥ | m(H,) [g]. An easy absoluteness
argument shows H [g] = 7%, has hull condensation”. Contradiction!

(b) is immediate: if in the situation as above h; are generic over H with hg, hy € H [g]
then Z};} are both restrictions of ¥ and hence agree. 4

Remark 2.14: It is not hard to see that if ¥ is forced to have branch condensation,
the Dodd-Jensen property etc, then the generic extension has branch condensation, the
Dodd-Jensen property etc.

2.3 Hybrid Mice

We will mainly follow [STb]| here. For our purposes a potential hybrid premouse will be
a an acceptable J-structure of the form N := (JE'P(A); €, E, B, E, B, M) s..



e E is a fine extender sequence as described in [MS94], E is an amenable code for a
coherent extender or failing that, empty;

o M € tc(A) is a premouse;
e B"B codes a partial iteration strategy for M;

e for all § < « at least one of Eg and B}, is empty, also at least one of E and B is
empty;

e for all B < « if (B"B)g # 0 then there exist 7,6 < f st. § = n+ & and

Nln = (Jf’B(A);E I'n,B | n,M) | ZF and there exists some iteration tree
T € N|n that is unique with the following properties

— the last normal component of 7 has limit length,

~IW(T) <&,

— 7T is according to the partial iteration strategy coded by B I'n,

— 7T is not in the domain of the partial iteration strategy coded by B I'n,

— Nlln = o(T)
and there exists a cofinal well-founded branch b through 7 and (E“B)B ={n+(|¢ €
[0,8) 73}

e let n < o and assume some 7T satisifies all the above requirements in N||n, if En =0
then for all £ < min{lh(7),« —n} we have that (é“B)g # 0.

The formula ¢ determines our organization scheme, it is a formula of the language Ly,
which is the language of set theory expanded by symbols A B.E E,B,M (and others we
need for the definition of fine extender sequence, but we will supress such details here).

It M is a premouse and X is a partial iteration strategy for it, then a structure N =
(JEB(A);e,E,B,E,B, M) is called a potential ¢-organized S-premouse (over A) iff
the partial iteration strategy coded by B"B agrees with Y. As is standard we write
NB = (J5P(A) €, E | B,B | B,(E"E)s, (B"B)g, M) and N||8 := (J;""(A); €, E |
B, B I 8, M) where 8 < a. We call these A’s initial segments.

It is shown in [STb] that potential p-organized Y-premice obey the usual laws of fine

structure as long as 3 has hull condensation. As usual we say a potential p-organized
Y-premouse is a @-organized Y-premouse iff all its initial segments are sound. On the
other hand we will require additional terms in the definition of iterability.
Definition 2.15: Let «, 8 be transitive classes of ordinals. Let M be a premouse and
let ¥ be a (possibly partial) iteration strategy for M. We say a @p-organized -premouse
N is («, B)-iterable iff it is («, 3)-iterable in the sense of [MS94] and all such iterates are
p-organized Y-premice.

[STb] shows that being a -organized hybrid premouse is preserved under iterations.
On the other hand it should be intuitively clear that in general there is no first order



statement that defines being a X-premouse which is why we have to require it in the
definition.

Remark: Let M be a p-organized -premouse. Let A be an iteration strategy for M.
Nothing stops us from defining ¢*-organized A-premice. These so-called layered hybrid
premice are an essential component of any advanced core model induction.

For our purposes we will need to consider two different ways to organize hybrid premice.
This is because it is rather difficult to pick trees over a not wellordered set. (|[STb]| actually
considers three different ways, but for our purposes we can ignore the difference between
"g-organized" and "g¢-O-organized".)

Definition 2.16: Let ¢ be a ZFC-formula. Let ¢, be the formula with one free variable
t in the language of hybrid premouse that corresponds to the following statement:

" A is self-wellordered, ¢ is an iteration tree on M, ¢ is according to the iteration strategy
3 coded by B but (t) is not defined, v (t), and t is minimal in the canonical wellorder
with these properties."

1) here can be used to restrict the domain to some desired class of iteration trees which
can be occasionally useful if, say, we only have a strategy for normal trees. We can mostly
ignore this here. If ¢ =t =t we will supress the subscript.

This can legitimately be called the "standard scheme". Unfortunately, it doesn’t really
handle hybrid premice over not self-wellordered sets very well. We will need to have
hybrid premice that can satisfy AD, so we will need a better way to organize our hybrid
premice. As it turns out p-organized hybrid premice will be a necessary ingredient.
Definition 2.17: Let M be a premouse, let n < w and a a self-wellordered set s.t.
M € te(a), T a (Card(a)’, Card(a)*)-iteration strategy for M. We write My for
the least sound above a, @-organized X-hybrid premouse M := (M;E,E, é, F, M)
st. for all # : M —x, M countable, M has a OD in some set of ordinals (wy,w)-
iteration strategy as a @-organized X™-hybrid premouse, F # () and M||crit(F) E
” there are n Woodin cardinals”.

Consider MlE #. it can interpret X on generic extension of any iterate, and using the
extender algebra it can make any sufficiently small set generic over some iterate. In a
sense Mlz# together with an iteration strategy A presents a master code for 3.
Lemma 2.18 (ZFC): Let M be a Lp-type premouse. Let o > Card(M) be a cardinal
and let X be a («, «)-iteration strategy for M. If MIE’# exists and is (o, )-iterable then
Y determines itself on generic extensions below .

This follows from Lemma 3.29 in [STb|. The theorem also holds for the suitable pairs
and HOD-pairs we will introduce later! The result tells us in essence that the existence
of a hybrid Ml# is a strong form of generic iterability. This motivates the following
definition which will be our goldstandard for all structures appearing during our core
model induction.

Definition 2.19: Let a be a set.

(a) I(a) is the union of all Lp-type premice M over a which have an (On, On)-iteration
strategy X, Mlz# exists and is (On, On)-iterable.



(b) Lp*(a) is the union of all Lp-type premice M over a s.t. M < 1(a) for all countable

7:M — M,a=7"1a).
Lemma 2.18 also allows us to build an alternate hybrid premouse closed under ¥ by
feeding in the right trees on MlE # instead.
Definition 2.20: Let N be a transitive set. Let M be a @p-organized ¥ hybrid premouse
for some (possibly partial) iteration strategy X s.t. M satisfies the first order theory of
Mlz# An iteration tree 7 on M is an attempt at making N generically generic iff:

e if o < 1h(7) is less than On NN, then E is the least total measure of M ;

e if a < Ih(7) is greater or equal than OnNN, then E := E7 is the least total
extender on the sequence of M7 s.t. some p € Col(w, N) forces that the generic
real coding N violates some axiom induced by F;

o if a < Ih(7) is greater or equal than OnNN and there is no E as above, then
Ih(T)=a+1.

We will refrain from giving a full definiton of ¢, ) here, but it says something akin to:
"t is an attempt at making some carefully chosen initial segment N of myself generically
generic, t is least such in length that is according to my internal strategy but is not in
the domain of my internal strategy, I have enough ordinals to ensure that ¢ is actually
making N generically generic, none of my initial segments in between N and including
myself fail to satisfy ."

We will ignore ¥ here and will just talk about g-organized hybrid premice. The right
choice of 1 (namely 1) = ”© exists”) is important for the scale analysis of Lp™(R). Here,
we only need to know that the scale analysis succeeds, not why it does so.

Note that technically a g-organized hybrid premouse is a A-hybrid premouse - A being
the iteration strategy of MlZ # . But it will actually end up being closed under 32, so we
will refer to them as g-organized >-premice.

Definition 2.21: (a) Let I" be an inductive-like, determined pointclass, M be a count-
able premouse and ¥ an (w1, wy )-iteration strategy for M with branch condensation
that can be coded by a set in I'. Assume that MIE’# exists and is (wy, wy)-iterable.
Let a be a set s.t. M € tc(a). Lpt*(a) is the union of Lp-type g-organized %-
premice M over a s.t. all countable hulls of M have (w1, w;) iteration strategies as
coded by sets in I'.

(b) Let M be a premouse and ¥ an (On, On)-iteration strategy with branch condensa-
tion. Assume that Mlz# exists and is (On, On)-iterable. Let a be a self-wellordered
set s.t. M € tc(a). Lp¥(a) is the union of Lp-type g-organized X-premice M over
a s.t. all countable hulls 7 : M — M have an OD in X (w1, w;)-iteration strategy
as Y™ -premice for some set of ordinals X.

Remark: We will always be able to assume that MlE # exists in the case of (b) above.

It should be easy to see that notions of iterabilty from the previous subsection gener-
alize to hybrid premice. We will make the following definition explicit.



Definition 2.22: Let M be a premouse that is generically (On, On)-iterable as wit-
nessed by X. Assume that Mlz# exists and is generically (On, On)-iterable. Let a be a
set s.t. M € tc(a).

(a) T*(a) is the union of Lp-type g-organized Y-premice M over a that are (On, On)-
iterable by A, M™% exists and is (On, On)-iterable.

(b) Lp**(a) is the union of Lp-type g-organized X-premice M over a s.t. M <1 (a)
for all countable elementary 7 : M — M, a = 7~ (a).

A concluding remark: by necessity M>7# will always be (p-organized. In all other con-
texts where we can assume that ]\41Z # exists, hybrid premice will always be g-organized.
Even if they are defined over self-wellordered sets. There is a good reason for this as we
will see later in this section.

2.4 Suitability

For the duration of this subsection we will let I' be an inductive-like determined point-
class, i.e. I'is closed under real quantification, is not self-dual and has the scale property.
Definition 2.23: Let P be a premouse, n < w. We say P is n-I"-suitable iff:

e (6] : k < m) is an exhaustive list of P’s Woodin cardinals and limits thereof,
P = (Lp")*(P|87);

e whenever 7 is a strong cutpoint and cardinal of P then Lp' (P||n) < P;
o Lp' (P]|¢) = "¢ is not Woodin” for all & # 67 for some k < n.

From now on, if n = 0, then we will supress it.
Definition 2.24: Let P be a n-I-suitable premouse. An iteration tree 7 on P that
concentrates on some window (8], ;,67’) for some k < n (67, := 0) is (I'-)correctly
guided iff for all limit o < Ih(7):

e there is some Q < LpY'(M(T)) s.t. Q defines a failure of §(7) to be Woodin,
Q@ < M] and b:= [0, ], is the unique branch s.t @ = Q(b,T);

o Lpt(7T) = 6(T) is Woodin but i/ (67) # §(T) then there exists some 3 < « s.t.
T>p can be considered an iteration on MﬁT above some 7 s.t. pw(MﬁT) < v (we
say 7 has a fatal drop at («a,7)).

Definition 2.25: Let P be n-I-suitable. Let 7 on P be correctly guided. If Lp" (M (T))
defines a failure of §(7) to be Woodin or 7 has a fatal drop, then 7T is called short.
Otherwise, we say T is maximal.

Definition 2.26: Let P be n-T-suitable, ¥ a (potentially partial) iteration strategy for
P. We say ¥ is (I')-fullness preserving iff:

e whenever 7T is a tree by ¥ and U is a normal component with base M and 6] has
an image 6;! for some k < n and U concentrates on (J4,,5), then U without

its last branch (if it exists) is correctly guided;
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e if o < 1h(7) is limit and the branch from 0 to o does not drop then M is n-
I'-suitable;

e if 7 has a fatal drop at (a,7) then 7>, is by the unique iteration strategy of M.
for extenders with critical point above +, furthermore we require this strategy to
be in I'.

Definition 2.27: Let P be n-I'-suitable. (P, X) is a n-I-suitable pair, iff ¥ is an (wy, w1)-
iteration strategy with branch condensation that is I'-fullness preserving.

The envelope of T, abridged Env(T'), is the set of all A C R s.t. for a Turing-cone of
countable o0 C R we have ANo € Cr(o). It is characterized by the following property:
if there exists a Suslin cardinal s bigger than the prewellordering ordinal of I', then each
set in I" has a scale all of which individual prewellorders are coded by sets in Env(T).
([Jac10], section 3.2)

If I' is determined then, assuming DCg, so is Env(I"). (|Will5|)

It can be shown that, in general, a I-suitable pair (P, X) does not exist s.t. a code for
> is in the envelope of I', as any such pair uniformizes the complement of a I'-universal
set. But, as it turns out we can approximate such pairs from within I
Definition 2.28: Let P be I'-suitable. We say P is short-tree iterable iff whenever
(Ti : k <mn) is such that

e Toison P, Ty is on (Lp")¥(M(Ti_1)) for all 0 < k < n;
e 7 is maximal for all & < n;

then there exists a cofinal wellfounded branch b through 7, with /\/lZ:z = (Lph)*(M(T,))

and for all short trees U on ./\/le" there exists a well-founded cofinal branch ¢ s.t. U "¢ is
correctly guided. (Note that ¢ is unique.)

We’ll refer to a stack as above as a mazimal stack.

Definition 2.29: Let P be I'-suitable and short-tree iterable. We say Q is a pseudo-
iterate of P (by ((7;: k < n),U)) iff there is some maximal stack (T : k < n) and P is
the last model of some U a correctly guided short tree on (Lp")*(M(Tz)).

Given a suitable pair (P,X), X is completely determined by how it moves a fixed
cofinal subset of §7. The ordinals in such a set can be represented by term-relations.
Definition 2.30: Let A C R, M a countable transitive model of a suitable fragment of
ZFC and o € M an ordinal. We say M weakly term-captures A at « iff there exists a
Col(w, a)-term 7 s.t. AN M [g] = 79 for all g C Col(w, ) generic over M. Write

™ = {(p,0)|p € Col(w,a),o € MCNw) pi 5 e T}

This does not depend on the choice of 7!

Definition 2.31: Let P be I'-suitable and short tree iterable. Let A € Env(I'). We
say P is weakly A-iterable, iff P and all its non-dropping pseudo-iterates weakly term-
capture A, for all maximal stacks (T : k < n) there exists some cofinal well-founded
branch b through 7y, s.t MbT” = (Lp")*(M(T)) =: Qand i/"(7}) = 7§ and o(19) = 7§
for all non-dropping short tree iteration embeddings o : @ — R.
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Remark: Note that if P is I'-suitable, weakly A-iterable then for a pseudo iterate Q by
T = ({Tr. : k < n),U) all branches b, through T that move 7} correctly, i.e. to 747,
will agree up to v4! := sup(SkM({74}) where M := MZIZ“. Thus there is a canonical
7 Hull? (7] U {rF}) — Hull?(r U {r2}).
We write HY for Hull” (v§ U {7F}). If 2 is a finite set of sets of reals, we let H} be
P
Heapya
Definition 2.32: Let P be I'-suitable and short tree iterable. Let A € Env(I'). We say P
is strongly A-iterable, iff it is weakly A-iterable and for all tuples (Qg, 91, R, 7o, Th, U, L{1>
s.t.

e Q; is a pseudo-iterate of P by ’ﬁ;
e R is a pseudo-iterate of Q; by Z/_l;-;

Uy '76_ U 7o
we have 7, o Ty omyl.

Lemma 2.33 (Woodin): Let T' be a determined inductive like pointclass. Let A €
Env(T') as witnessed by z, i.e. ANo € Cr(o) for all o > z, and assume that I'-mouse
capturing holds, i.e. Cp(z) C Lp'(z) for all x € R. Then there exists some I'-suitable
P(z) over z that is strongly A-iterable.
ProOF: This is Theorem 5.4.8 in [SS]. 4
Corollary 2.34: Assume that additionally Env(I") # P(R), then there exists some suit-
able pair (P(z),%).
Proor: Using the above mentioned properties of the envelope we do get a self-justifying
system consisting of sets in Env(I'). Using the methods of section 5.4 in [SS]| we can
then get ¥ as the unique iteration strategy that moves all term relations for set in that
self-justifying system correctly. 4
Let us now assume that M is a model of determinacy and M |= © = . Let I = (22)4
and z € RM. We can now define a directed system F:

o the elements of F are I'-suitable premice P(z) together with a finite set 2 of
ODM (2) sets of reals s.t. P(z) is strongly A-iterable for all A € 2;
o (P(2),2) <r (Q(2),B) iff Q=) is a pseudo-iterate of P(z) and A C B;

P(z
o whenever (P(2),2) <r (Q(2),B) we let W‘Z_(—P(Z)’Q[)V(Q(Z)’%)) : Hm( )

for any 7 that witnesses that Q(z) is a pseudo-iterate of P(z).

Q(2)

— Hg ' be 7127;

Let H(z) be the direct limit over F. It has a unique Woodin cardinal §7().
Lemma 2.35 (Steel-Woodin, see [SW16]): H(z) is well-founded. 6"*) = © and
H(2)||6"(*) = HOD, NVe.

We will want to use the language of suitable premice in a ZFC-context also. We say
P is (ZFC)-suitable iff all the properties of a I'-suitable premouse hold but with every
mention of Lp' (-) replaced by I(-). We will allow (ZFC)-suitable pairs to be larger than

12



countable and be more than just (wp,w)-iterable. In fact, our pairs will determine
themselves on generic extensions. Of course, our ZFC-suitable premice will be suitable
in some determinacy model for some pointclass, but that pointclass might only exist in
a generic extension.

2.5 HOD-mice

This will be a short review of the notions and terms and the associated background
knowledge we will lean on heavily during the proof. An in-depth treatise on the subject
of HOD-mice (below ” ADg + © regular”, which is sufficient for our needs) can be found
in [Sar]. With few exceptions proofs for the theorems and lemmata listed here can be
found in [Sar|, the theorem header will indicate the appropriate theorem number.

The background theory for this section is ZF +AD™'. We will also assume that no
Wadge initial segment of our universe generates a model of ADr +0© is regular.

A HOD-premouse P is a ZFC™-structure of the following form: let (§; : i < A¥) be
a complete, increasing listing of all P-cardinals which are Woodin cardinals or limits of
Woodin cardinals (inside P); P has A” layers P (i), P(i) has exactly w cardinals above
§i; P(i)” :==P(') it i =" + 1, P(i)~ := P||J; if ¢ is limit, and P(0)” := 0; P(i) is a
g-organized hybrid mice relative to some partial strategy @ X7 for P (i)~ for all i < A7,

i<

furthermore we require that if 7 is a limit ordinal then ((6;)*)P0+D = ((8;)+)P®.

We say P <gop Q iff both P and Q are HOD-premice and there exists some o < @
s.t. P = Q(a); write P <gop Q iff aditionally a < A<.
Definition 2.36: A HOD-pair (P, Y) is a pair s.t. P is a countable HOD-premouse and
¥ is a (w1, w)-iteration strategy with hull condensation s.t. Yow),rNEQ = ZaQ for all
iteration trees T according to 3 with last model @ and all a < 2. Here Eg(a)j refers
to the iteration strategy on Q(a) induced by ¥ via 7 and Zg is the partial iteration
strategy on the Q-sequence.

We will often confuse 22 and Xg(,),7 in cases where the latter does not depend on
T, ie. if ¥ is positional, and in that case we might also write ¥g(,). By the terms of
the definition no harm will come from this.

Remark 2.37 (ZF): The above definition actually makes perfect sense outside of a
determinacy context. We will want to allow uncountable structures as well. We write
HP,, for the set of all pairs (P, %) where P is a HOD-mouse of size at most 7, and ¥ is a
(vF,yT)-iteration strategy with hull condensation that satisfies the above requirements.

In all relevant cases we will have that our HOD-pairs will trace back to a HOD-pair
in a determinacy model that exists in VU« This will allow us to make use of results
of this subsection even outside of a determinacy context.

Definition 2.38: Let (P,X) be a HOD-pair and I a pointclass. 3 is I'-fullness preserv-
ing iff for all T according to ¥ with last model Q s.t there is no drop on the main branch,
(LpF’EQ(@"T)(QHB) C Q for all cutpoints 8 of Q and « minimal with 8 € Q(«).

For HOD-pairs fullness preservation together with branch condensation is a core prop-
erty that we will strive to have in every situation involving HOD-mice. For one, pairs
with these properties will have all the usual regularity properties.

13



Lemma 2.39 (Sargsyan, 2.42): Let (P,X) be a HOD-pair s.t. ¥ has branch conden-
sation and is P(R)-fullness preserving. Then ¥ is pullback-consistent, positional and has
the weak Dodd-Jensen property.

Note that the requirement in ([Sar|, 2.42) for 3 to be Suslin-co-Suslin is always fulfilled
as shown in ([Sar|, 5.9).

To every (P,Y) a HOD-pair, we associate a pointclass T'(P,X). T'(P,X) is approxi-
mately the pointclass of sets of lesser Wadge-degree than some code of ¥ but this in itself
is not a coherent definition. (Different codes will be projective in each other but there is
no way to know that they share the same Wadge rank).

The correct definition for a limit type HOD-pair (P,X) is: A € T'(P, X) iff there exists
an iteration tree 7 according to X with last model Q, there is no drop on the main
branch, there exists o < A< and A is Wadge reducible to a code of Yo(),T

We will omit the definition of I'(P,X) in case P is a successor type. It can be found
in ([Sar],Page 131).

Let (P,3) be a HOD-pair. We say (Q, A) is a tail of (P, %) iff there is some iteration
tree 7 on P by ¥ with last model Q, the main branch of 7 does not drop, and A = ¥ 7.

Let (P,X),(Q,A) be two HOD-pairs. We say comparison holds between (P,Y) and
(Q, A) iff there exist normal iteration trees 7 on P and U on Q by ¥ and A with last
models P* and Q* respectively, and

o P* <1 Q" and Yp+ 7 = Ap+y
o or Q" IP*and Ag-yy = Yo+ 7.

Note that we cannot expect comparison to hold everytime, e.g. if Lp' (" ’E)(a) +
Lp"(@Y(q) for some a.
Lemma 2.40 (Sargsyan, 5.10): Let (P,X),(Q,A) be two HOD-pairs s.t. both ¥ and
A have branch condensation and are P(R)-fullness preserving. Then comparison holds.

At this point we still owe the audience a proof that anything but the most basic HOD-
pairs exists. The next Lemma, known as "generation of pointclasses" shows that every
"full" Wadge Initial segment of our Universe is generated by a HOD-pair.

Theorem 2.41 (Sargsyan, 6.1): Let I' := {A € P(R)M|||Al|w < 0} where 6 < © s
an element of the Solovay sequence. Then there exists some HOD-pair (P,X) s.t. ¥ has
branch condensation and is T'-fullness preserving and T'(P,3) =T.

We can see that a long Solovay sequence induces complicated HOD-pairs. The converse

is also true.
Theorem 2.42 (Sargsyan, 5.21): Let (P,X) be a HOD-pair s.t. % is P(R)-fullness
preserving and has branch condensation. Let

D :=({(Q,A): (Q,A) a X-iterate of (P,X)},{mor : o R it.-emb. })

be the directed system of all Y-iterates of (P,X) together with the iteration embeddings.
(Recall that X is positional)
Let H be the direct limit. 79 o : @ — H the direct limit embedding. Then

HOD NV ., =Hlmo(d5)
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for all (Q,A) € D and all @ < \C.

The preceding theorem goes under the label "HOD-analysis" (it also justifies the term
HOD-mice as HOD is in fact a HOD-premouse, more or less). It has been proven for many
different models at this point. The proof is always quite the same, and is essemtially the
proof of Lemma 2.35. The crux being that it depends on "mouse capturing" which we
do not know how to prove in general. Sargsyan has shown that it holds in the minimal
model of ADg +0 regular and below.

Theorem 2.43 (Sargsyan, 6.19): Let (P,X) be a HOD-pair s.t. ¥ is T'(P,X)-fullness
preserving and has branch condensation. Let x,y € R and assume that y € OD(z, %)
then y € Lp¥(x).

This theorem has a counterpart for R-premice.

Corollary 2.44 (Steel): Let (P,X) be a HOD-pair s.t. 3 is T'(P, X)-fullness preserving
and has branch condensation. Let A C R be OD(X) then A € Lp~(R).

PROOF: See [Ste| 17.1. -

Note that the preceding HOD-analysis theorem cannot be used to analyse the "full"
HOD as the requisite HOD-pairs cannot exist inside the model. We are left with the
need for a more general concept of "suitable premouse". For our purposes we only need
a rather neutered version.

Let (P, %) be a HOD-pair s.t. ¥ has branch condensation and is P(R)-fullness pre-
serving. Assume that the supremum of the length of ODy-prewellorders on the reals is
©, we say © = 0. It follows that any set of reals is ODyx(x) for some = € R.

We can now define a notion of I'-suitable X-premice exactly as earlier but as a X-
premouse. Let then I' = ¥2(X) and 2z € R. We can now define a directed system F:

e the elements of F are I'-suitable X-premice R(z) together with a finite set 2 of
ODx:(z) sets of reals s.t. R(z) is strongly A-iterable for all A € 2,

e (R(2),2) <r (Q(z),B) iff Q(z) is a pseudo-iterate of R(z) and A C B;

R(z z T
e whenever (R(2),2) <r (Q(2),B) we let FiR(z),Ql),(Q(z),%)) : HQ[( ) Hg( ) be T

for any 7 that witnesses that Q(z) is a pseudo-iterate of R(z).

Let H(z) be the direct limit over . It has a unique Woodin cardinal (above P) §7(2),
We can relativize the arguments for Lemma 2.35 to get:

Lemma 2.45: H(z) is well-founded. §™%) = @ and H(2)||6"*) = HODy . NVeo.

A vexing problem with branch condensation as compared to hull condensation is that
it we cannot generally assume that a pullback of a strategy with branch condensation
has branch condensation.

The next very useful lemma will show that this problem can be done away with when
dealing with HOD-pairs by internalizing the property using the derived model.

Naturally, we will have to assume that we are dealing with limit types. This can be
weakened slightly as seen here:
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Lemma 2.46 (Sargsyan, 3.26): Let ((Pq,2qa) : o < X) be a sequence of HOD-pairs
s.t.

e )\ is a limut ordinal;
e P, <gop Pp whenever a < 3, and X, is the restriction of g to trees on Py;

o Y, is U I'(Pa,Xa) fullness preserving and has branch condensation for all o < \.

a<A
Let P := |J P,. Let w: P — P elementary. Then whenever P, € ran(rw) we have that
a<A
(771(P,),¥7) is a HOD-pair and X7 is  |J  T(n1(Pa), XT)-fullness preserving and

PaoEran(m)
has branch condensation.

2.6 S-constructions

Lemma 2.47 (S-construction lemma): Let a be a set. P € Ji(a) a partial order and
g C P generic over Lp(a), then Lp(a) [g] = Lp(alg]). The same holds for Lp' (a),Lp™(a)
and I(a).

PRrROOF: For the ” C” direction we just need to note that the size of the forcing is small
compared to the critical point of extenders on the sequence, thus extenders extend to
the extension and this is also true for any iterates.

For the ” D ” direction given a a [g]-premouse we can use the definability of the forcing
relation to construct a premouse over a, preserving the fine-structure and iterability.
We call this an S-construction here. (Originally this was called a P-construction, see
[SS09]). -

This is another occasion on which our prefernce for g-organized hybrid premice pays
off.

Lemma 2.48 (S-construction lemma, hybrid version): Let M be a fine structural
model that is generically (On, On)-iterable as witnessed by ¥. Assume Mlz# exists and
is generically (On, On)-iterable. Let a be a set s.t. M € tc(a). P € Ji(a) a partial
order and g C P generic over Lp™(a), then Lp¥(a)[g] = Lp*(a[g]). The same holds for
Lp"*(a), Lp™*(a) and I¥(a).

PrROOF: Notice that when N < Lp*(a) models ZF then P € N and it is absorbed into
Col(w, N) over Lp*(a). Hence the tree to make N generically generic and the tree to
make N [g]| generically generic are the same. The rest is as above. 4

2.7 Vopenka Algebra

Core model theory, as far as we know, depends on the axiom of choice. Considering our
background theory, this is a problem. We will deal with this by instead working in some
inner model of choice, and if necessary extending operators and strategies to V by the
use of the Vopenka Algebra.

The size of the Vopenka Algebra is the main reason why our arguments do not work
in the Apter model.
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Write ©(«) for sup{p : 3f : Voqr1 — [}. We shall also set ©(w) =: O that way the
notation is consistent with descriptive inner model theory.
Lemma 2.49: Let A, B C On with pu := sup(A). Then A is generic over HODpg for a
forcing notion of size <O(u + 1) called the Vopenka algebra.

PRrROOF: Let f: a — (P(P(u))\{0}) N OD be an OD bijection. Then o < O(u + 1).
Define P := (a; <) by 8 <~ iff f(8) C f(v). We then have that G :={f < a|4A € f(5)}
is generic over HODpg for P. A can then be computed from G by & € A if and only if
Yy culgevy) e 4
Remark: Let k be a cardinal that is ©-closed, i.e. O(«a) < k for all @ < k. Let X C On,
then all bounded subsets of k are generic over HODx for a <« size forcing notion. Note
also that x is a limit cardinal in V' and a strong limit in HOD x.

Lemma 2.50: There exists a proper class of k that is ©-closed and for all X C On and
all ¢ < K there exists some p < k that is £-closed in HODx, i.e. Card(u¢) = p.

PROOF: Let k be a ©-closed ordinal s.t. the set of ©-closed ordinals below k has order-
type k. Obviously, the set of such x is a proper class. Fix X, as above. Let p be the
(€T)HOPX_th element in the enumeration of ©-closed ordinals. By choice of x we have
u<K.

Note that p is both a strong limit in HOD x and that its cofinality equals £t in HOD x
as the enumeration of ©-closed ordinals is OD. We then have

p = p-supnt < p
n<p
as computed in HOD x. Thus p is as desired. 4

Let now k; be the i-th such . For the rest of the paper we will write k := sup ky,.
n<w

2.8 Core model induction

At its core, "Core model induction" is the following process:

1) T'is a determined pointclass;

)
2) identify Tt the "next" pointclass with the scale property;
3) show that I'" is determined;

)

(
(
(
(4

repeat.

For example, let I' C L(R) be a determined inductivelike pointclass. Assuming that
T # (£3)X®) we can then use [Ste08c] to find some B and n > 1s.t. T C P(R) N Jz(R)

and Z;{B ®) has the scale property.

By Corollary 2.34 we then have some I'-suitable pair (P, ¥). At this point in a core
model induction we would usually leverage our hypothesis into extending . Let us
charitably assume that 3 can be uniquely extended to a (On, On)-iteration strategy with
branch condensation.
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The way to reach the next determined pointclass is by the use of core model theory
relativized to the theory of ¢-organized (!) 3-hybrid mice. For this we will have to
momentarily assume that we work in an universe with choice.

Definition 2.51: Let X be a (On, On)-strategy for the finestructural model = with hull
condensation. Let y be self-wellordered s.t. = € tc(y). A K -construction over y is a
sequence (Ng : & < 0) of p-organized X-premice such that

(a) No = (te(y); €,0,0, z);
(b) if € < 6 then A% is solid and we let C,(NV;) =: M = (M; €, E, B, F, B, z), then:

(i) either M is passive and Ney; := (M; €, E,B,E.0, x), where E is some exten-
der cohering with M, which is certified in the sense of [Ste96],

(ii) or Ngy1 := (M'; €, E, B, 0, B, z), where B is given by the definition of hybrid
premice;

(c) if X < @isalimit, then Ny = (Ny; €, (EY :a € dom(E))), (B :a€ dom(By)), 0,0, x)
, where o € dom(EX) iff a € dom(En) for all but boundably many n < A and the
sequence of the Ep is eventually constant, E is then this eventual value, B, is
defined analogously.

A K*-construction is maximal iff we always add extenders at all levels where we are
allowed to do so by the definition. As usual, as long as some minor iterability condtions
are met, maximal K%*-constructions are unique.

Lemma 2.52 (K%* dichotomy,ZFC): Let Y be a (On, On)-strategy for the finestruc-
tural model z with hull condensation. Assume that Mo"" exists for all self-wellordered y
s.t. x € te(y). Fiz some such y. Then

e cither Mf_ﬁ(y) exists,

e or the unique mazimal K> -construction over y never breaks down and is (On, On)-
iterable.

PRrOOF: The proof of [SS| works here as well. The only thing left to check is that following
the realizable branch strategy produces X-premice. But any iterate by this strategy can
be embedded into one of the N¢, which are X-premice, so by condensation the iterate is
a Y-premice as well. 4

As usual a maximal (On,On)-iterable K“* construction can be refined into a core
model with the usual covering properties (see [Ste96],[JS]). In a core model induction
we would leverage our hypothesis to show that necessarily we will have to come down on
the "either"-side of our dichotomy. As usual, this will give that sets projective in a code
for ¥ are determined, closing the circle. See [SS| for greater detail.

In our specific case, Busche and Schindler did already do a lot of our work in this
regard.
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Theorem 2.53 (Busche-Schindler): Let A be a set of ordinals that code VIOP in
some straightforward fashion. Let X C Lp(A) be cofinal and have ordertype w. Let ¢ be
s.t. every subset of w1 Vopenka-generic over HODx is already generic over VHODX e
u < k be a HOD x -cardinal that is (-closed in HODx. Let g C Col(w, u) be generic over
V.

Then L(RHODxg)) = AD*.

For our purposes this will not quite be enough. We will need:

Theorem 2.54: Let A be a set of ordinals that code VHOP in some straightforward
fashion. Let X C Lp(A) be cofinal and have ordertype w. Let ¢ be s.t. every subset
of w1 Vopenka-generic over HODx s already generic over VCHODX. Let p < Kk be a
HOD x -cardinal that is (-closed in HODx. Let g C Col(w, ) be generic over V.

Then LpT (RHOPxI9l) = ADT.

The proof here is actually quite the same, so we will omit it. We only need to substitute

the scale analysis of [Ste08a| and [Ste08b] for the scale analysis of [Ste08c|. But, of course
we still need a hybrid version of this theorem.
Theorem 2.55: Let M be a finestructual model that is generically (On, On)-iterable as
witnessed by X and other parameters all of which are ODy for some set of ordinals Y.
Assume that n := Card(M) < k. Assume that MIE’# exists and is generically (On, On)-
iterable.

Let A be a set of ordinals that code VHOPY in some straightforward fashion. Let
X C LpE(A) be cofinal and have ordertype w. Let C be s.t. every subset of wi Vopenka-
generic over HODx y s already generic over yHOPxY oy n<pu<kbeaHODxy-

cardinal that is (-closed in HODx y. Let g C Col(w, ) be generic over V.

Then Lp+E(RHOPxvla] 39 | gHOPxvlly L Ap+,

Here we need the scale analysis of [STb].

Our immediate priority now is how to proceed to the next pointclass from P(R) N
Lp+(RHODX[g]).

3 A maximal model of AD" +0 = §,

Let ¢ be some cardinal s.t. for all X C On all subsets of wy are generic over VCHODX ;
Lemma 3.1: Let A C On be a ODyx set where X C Lp(A) is cofinal and of ordertype w.
Let n be sufficiently big, and let Y < VWHODX be closed under (-sequences with Lp(A) € Y.
Let m: M — Y be the reversed transitive collapse of Y. Then Lp(rm—(A)) € M.
PROOF: We want to show 7~ 1(Lp(4)) = Lp(7—1(A)). Assume not! Clearly, 7—!(Lp(4)) <
Lp(7~1(A)) so we have a missing Lp-type premouse M over 7~ 1(A).

Cramm 1: Ult(M; ) is countably iterable.

PROOF OF CLAIM: Let M be a countable hull of Ult(M;m). M is generic over M for
a size <(-forcing. So we have 7 : M [M] — VHHODX [M] an extension of m which is
countably closed in HOD x [M]. By absoluteness M is a hull of Ult(M; ) = Ult(M; 7*)
in HODx [M] so M is a countable hull of M and thus has an OD, for some Z, (w1, w1)-
iteration strategy. O
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We have that 7 is cofinal in Lp(A) so then Lp(A) <« Ult(M; 7). Contradiction! =

Note that this theorem relativizes to hybrid-premice as long as the strategy satisfies
hull condensation.
Lemma 3.2: Let X C On. Let M € HODx be a premouse and ¥ an (On, On)-iteration
strategy that witnesses strong generic iterability for M in HODx. Also assume that
(M,X) is such that MIE# can generically interpret X as in Lemma 2.18, e.g. M is Lp-
type. Then Mlz’#(A) exists for all sets of ordinals A € V and is (On, On)-iterable in
V.

Proor: First note that X extends to a strategy with hull condensation over V which we
will also call 3. Simply a tree 7 is by ¥ if it is by the extension of Sigma to HODx [T].
The terms of strong generic iterability ensure that this is a coherent definition.

We'll first have to show that X-# exists for all sets of ordinals in HODx. Let us
fix A € HODx. Let n be a cardinal as in Lemma 2.50 s.t. Card(A) < n. Take some
frw— (n)E"A cofinal of ordertype w. We will have that £ | HODx [f] is definable
over that model, hence the fine structure theory of L*(A) works as normal in that model.
Clearly, f witnesses a failure of covering. Hence, A>7# exists and is in HOD x by an easy
absoluteness argument involving the Levy collapse.

The same argument shows that HODx [Y] is X-#-closed whenever Y C On.

Fix some A € HODy again. Let us now assume for a contradiction that Mlz#(A)
does not exist as a mouse in V. Then we also have that HODx = Mlz# does not exist
because ¥ then determines itself on generic extensions over HODx and the universe
is closed under ¥ sharps. The usual absoluteness argument then gives that any local
Mlz#(A) is actually iterable over V.

We can thus construct K>(A) inside of HODx. Let > Card(A) be a V-cardinal. Let
fiw—on* = (77+)K2(A) cofinal. Let p be a regular in HOD x cardinal s.t. the Vopenka
Algebra to add f has size < p. Now consider a modified maximal K>°-construction
K E “ s.t. all extenders used in the construction derive from hulls that are closed under
p-sequences.

This construction will still be certified in HOD x [f]. Therefore by the usual iterability
proof it is still countably iterable there, and by the closure of HOD x [f] under sharps it is
actually (On, On)-iterable. Let v > p be regular in HOD x and sufficiently large. We can

run the proof of stacking mice ([JSSS09]) in HOD%OI(W’“ ) using a continuous sequences

of substructures s.t. stationarily often the restriction of those structures to HODx is in
Col(w,p)

HODx and closed under p-sequences. Hence, cof(SHOPx (KEC(A)HI/)) > v.

We thus have that the above structure is an universal weasel in both HODx and
HODx [f], and as v can be arbitrarily large they must construct the same K*(A). But
then f witnesses a failure of covering in HODx [f]. So, M7 exists there and using
generic interpretability it must be fully iterable in V. Contradiction! 4

Let now A C & be a set of ordinals that codes VHOP in a straightforward manner.

Let X C Lp(A) be cofinal of ordertype w. Whenever p < x is ©-closed and (-closed in
HODx we call it good.
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Let us now fix some large enough 1. A substructure Y of HTEIODX is called "good" iff
p CY, Card"OPx (V) = 1, Lp(A) € Y and Y is closed under ¢ sequences. By choice of
w the set of good structures is stationary. While we are fixing this n for the most part,
there are club-many of them which is important for e.g. Definition 2.12.
Lemma 3.3: Mf exists and is On-iterable.

PROOF: Let u be good, let g C Col(w, i) be generic over V. By Theorem 2.53 working in
HODx [g] we have L(RNHODx [g]) = AD. Let T’ = (£3)LRMHODxl)) (RAHODY [g])#
exists, therefore [dp, OnN(R N HOD [g])#] functions as a weak gap in Lp(R). We there-
fore get a self-justifying system (A; : i < w) Wadge cofinal in L(R N HODx [g]). See
|SteO8b).

We can then get a stack of premice (P(n) : n < w) and iteration strategies ¥, s.t.

e P(n) is a n-I'-suitable premouse, 5772(") = 577;(m) for all m < n;

e ¥, is a I-fullness-preserving (wi,ws)-iteration strategy on P(n) in HODx [g];

e let P:= |J P(n) and

n<w

+_ {JQ(P) « minimal with p,,(Jo(P)) < 67

L(P) no such « exists

where 67 := sup 577;(71)7 then ¥,, acts on all of PT.
n<w

It is not hard to see that we can get a sequence like this for all inductive like I'* C
(A%)L(RQHODX[QD. (If ® is a strategy for a course mouse that captures an universal
I-set, then the full background construction of M{p # will reach such a sequence.)

Unfortunately, we can not Xj-reflect the existence of such pairs. But we can reflect
for every A; the existence of sequences of strongly A;-iterable mice. A simultaneous
comparison will then yield the required result.

For every n < w we have that 3, | HODx is a ((u+)HOPx (uT)HOPX)strategy.
CrLaM 1: @ X, extends uniquely to a (normal tree) (k, k)-iteration strategy in HODx.

n<w
PRrROOF OF CLAIM: This is just as in [Ste05] (Lemma 1.25). For the reader’s convenience
we will reproduce the argument here: given a good hull Y, 7 : M — Y the reverse of the
Mostowski collapse, and T € Y a tree, we write Ty for the preimage of 7 under 7 and
bl = S(Ty) if this is defined.

The extensions ¥* is simply defined: Ty is by X* iff Ty is by X for stationarily many
good hulls Y. It is not hard to see that this defines %* uniquely, we just have to show
that it is total on trees of length less than « in HOD .

We say a hull Y is stable (for 7) iff for all good Z’ 2 Z O Y we have that 7z z/” [bg] C
b;, where w7 7 is the composition of the collapse of Z’ with the reverse of the collapse
of Z. We will show that there always is a stable Y. It is then not hard to see that we
get some cofinal wellfounded branch b through T by >*.

21



There are three cases: first assume that cof(7) = w. Because good hulls are countably
closed, whenever Y is good with 7 € Y and 7 : M — Y is the reverse of the Mostowksi
collapse we have by € M. We can then find stationarily many hulls s.t. 7(by ) is constant.
Any hull Y from this stationary set is stable. This is because whenever Z O Y is good
we can find Z’ D Z in our set. We skip further details.

Now let us assume that Ty is short for stationarily many good Y. Fix such a Y,
and let m : M — Y be the reverse of the Mostowski collapse. By Lemma 3.1 we have
Lp(A) € M. Note that Lp' (A) C Lp(A). (This is because any countable in V hull of
Lp' (A) is <p-generic over HODy.) Hence the appropriate Q-structure for 7y is in M.
By a standard argument we then have b]. € M. We can then press down on 7(bJ,). The
rest is as in the previous case.

Let us now finally assume Ty is maximal for stationarily many good Y. We can assume
that cof (7)) > w. Let us now fix two such hulls Y C Z. Let cy 7z be the downward closure
of my 2" [bz/—] Let n :=supecy,z. As cof(n) > w we have ¢y z = [0,77)7-2. If n =1h(Ty)
we are done. So assume not.

We will show that Tz | n is maximal. Therefore 1 will be a cutpoint in the tree and
hence cy,z C b7Z' as wanted.

Because Ty is maximal we have i’-(5,) = §(Ty) for some n. Fix some p < d,, we can

24
then find some o € b] s.t. crit(igﬁ) > ZOT‘;(p) for all a < B € b].. Lifting this pointwise
under 7y z we get i:i,z(a),ﬁ(p) = igjfry’z(a)(p) < §(Tz | n) for all Ty z(a) < B € cyz,
just as intended. O
>* which we will identify with ¥ from now on then extends to generic extensions by
the argument from [SZ08§].

(For the reader’s convenience we offer a sketch here: Let h C Col(w,n) (n < k)
be generic over V [g]. Using the extended iteration strategy we get sets A; C AF C
RNHODx [g] [h]. (This argument will re-occur later in this paper). Now, with w many
Woodins we can use the extender algebra to internalize statements projective in the A}.
We then get

<H(5110DX[Q]; €4, i <w) < <H¢,IJ{IODX[g”h]; e AT < w).

Then "P(n) is strongly A;-iterable" for all n,i gives rise to an extended iteration strat-

egy.)
It is then easy to see that @ X, extends to a normal k-iteration strategy.
n<w

CLAIM 2: There is no a < On s.t. p,(Ja(P)) < sup(67™ :n < w).

ProOOF OF CLAIM: Assume not. Let o be a minimal counterexample. Let m be minimal
s.t. pu(PT) < 5E(m). Let Q be the core of PT above P(m). Q has a unique iteration
strategy above P(m) and that is in LIRNHODx [g]). ( It can be defined by the iteration
strategy looking for a weakly iterable @Q-structure. See [Stel0]).

The subset of P(m) that is defined by Q, call it a, is thus in HODé?SSHODX[gD. Hence,
by mouse capturing, we have that a € Lp! (P(m)) C P. Contradiction! O

22



Thus P# is active and has w Woodin cardinals. One can then show that this is x-
iterable. The next lemma will show that such a strategy extends to On. 4

Lemma 3.4: Let M be some relativized premouse in HOD x for some X. Say Card(M) =
a < k and ¥ is a (K, k)-iteration strategy with hull condensation that is ODx. Then X
extends (uniquely) to an (On, On)-iteration strategy with hull condensation.

PRrOOF: Uniqueness is easy, so we will leave that to the reader. Let 7 be some tree which
is according to some partial extension with hull condensation. Let Y C 1h(7) be cofinal
of ordertype w. Working in HOD x y we get a countably stable hull, i.e. a countable hull
T* s.t. for every countable hull T as witnessed by (o, (75 : 8 < Ih(T)) extending 7* and
every other countable hull T of T as witnessed by (7, (Tg: p < 1h(7)) which extends T as
witnessed by (77! oo, <ﬁ;}100(6) omg: B <1h(T)) we have 6! o ¢” [X™(T)] C £ (T).

Assume for a contradiciton that there is no stable hull. We then have a sequence

(Ta:a < wi{ODX‘Y> s.t.

e 7, is a hull of T for all a as witnessed by (o4, (g : B < Th(7a)));

a+1

e Toy1 extends T, but o—;}rl oay” [E’rg (’7;)] ¢ Xm0 (Tat1)-

Let 7 be the direct limit and (o, (m5 « B < Ih(T))) the appropriate direct limit

embeddings. Fix a cofinal subset a of £ (7). There exists some o < w?ODX’Y s.t. 0, [a]

is covered by ranc,. Let b, be the downward closure of (04) 7! 0 0.” [a]. Tt is then easy
to see that T4 by is a hull of 7°¥70 (7). By hull condensation b, = X7 (7). But the
same is true for a4+ 1. So U;Jlrl 00y [EM(Ta)] C s (Tat1) after all. Contradiction!

Fixing a stable hull 7 as witnessed by (o, (mg : 8 < Ih(T)) we can define a cofinal
wellfounded branch by through 7. & € by iff there exists a hull T extending T as
witnessed by (7, (g : B < Ih(T))) s.t. 71(¢) € X™(T). This does not depend on the
choice of stable hull but it might depend on Y. We have to eliminate that possibility.

Let us fix some 7 : M — VnHODX’Y s.t. T"by € ran(m) and n C M where 3 is such
that every subset of M is <S-generic over HODxy. Let 7°b = 7~ 1(7T"by). By the
construction of by we have T is by ¥ and b= X(T).

We want to see that every countable hull 77b € V of T by as witnessed by (o, (75 :
B < Ih(T)) is by ¥™. Let us fix some countable hull 77b as above then.

(T"b,mo) is generic over HOD x y for a <7 size forcing. 7 extends to

T M [(%AB, Wo)} — VWHODX’Y [(%AB, Wo)} :

By absoluteness 77b is a hull of 77by, by elementarity it is then a hull of T7b as
witnessed by (7, (75 : 8 < 1h(T))) where 7y = mo, but then 7"b is by X™.

We then now that by does not depend on Y, because if there were an alternate by we
would have a hull 77b of 7" by and a hull 7 ¢ of T bz with b # ¢ but both hulls are
according to some common pullback. Contradiction! 4

We only get a normal tree iteration strategy for M here. This will suffice for our
purposes as we are only interested in genericity iterations. Note, though, that our core
model induction will eventually reach a full iteration strategy for M.
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Lemma 3.5: Let X C On. Let M € HODx be a premouse and ¥ an (On, On)-iteration
strategy that witnesses strong generic iterability for M in HODx. Also assume that
(M,X) is such thal Mlz’# can generically interpret X as in Lemma 2.18, e.g. M is
Lp-type. Then MZ™ exists and is On-iterable.

PROOF: The proof is essentially the same as the previous lemma, but instead we’ll do our
core model induction in L(R N HODy x/ [h],¥ | RN HODy x/ [h]). Here X’ C Lp™(A’)
cofinal and has ordertype w, h C Col(w,n) generic over V, n > Card(M) is (-closed in
HODy x/, and A’ codes VHODY in some straightforward fashion. To even get started
we'll need that ¥ [ RN HODy x/ [h] is self-scaled. Thankfully, we have already shown
that Mlz# exists, so this is then provided by a result of [STb]. The necessary scale
analysis can also be found in that paper. As before we get ME’# in HODy x+ [g]. As
M s definable, we do get it in HODy too. 4

The above lemma shows that we cannot expect to go far by staying in one singu-
lar HODx. We will need to relate iterability between HODs the universe and generic
extensions of either.

Lemma 3.6: Let X C On a set.

(a) Let a € HODY, then I"OPx(a) =1V (a).

(b) Let a € HODx, o an ordinal, and g C Col(w, ) generic over V, then INOPx (g) =
1MODx9](4).

(¢) Let o € On, g C Col(w,a) and a € HOD [g], then T1OPxdl(q) = 1VId],

PrROOF: (a) "Left to right" is just Lemma 3.2, "right to left" uses the definability of
iteration strategies for Lp-type premice and similarly for hybrid Mi# .

(b) "Left to right" utilizes the generic iterability given by Lemma 2.18 and the product
lemma, "right to left" is homogeneity.

(c¢) "Left to right" is an adaptation of Lemma 3.2. We just have to realize that we
can make subsets of ordinals in V' [g] generic over HODx [g] by making a Col(w, «)-
name for such a set generic over HOD x and using the product lemma. For "right to
left" we just need to realize that the definability of iteration strategies for Lp-type
premice means that the iteration strategy restricted to HODx [g] has a name in
HODX . —

For the sake of readability we will from now on omit relativizing I(-) to models as

above.

Remark: This combined with Lemma 3.4 gives us that generic (k, k)-iterability over
HODx implies generic (On, On)-iterability. (One must feel sorry for the intrepid thinkers
of HOD x as the true reason for this phenomenon is literally beyond their comprehension.)

We can now define the model with which we will work throughout the next section:
we let T’ ff 4 be the downward closure of

I, = {A c RMOPxUI LA, RTOPx]) = ADT 0 = 6}
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under the Wadge order.

(NOTE: Write R for RHOPx[d] )
Lemma 3.7: Let a € HODy [g] be countable and assume M < Lp“A®)(a) for some
A€ Fff’g, Then M 1is strongly generically (On, On)-iterable in HODx [g].

PRrOOF: Clearly, M has a (w1,w;) iteration strategy in HODx [g], call it ¥. Then there
exists some inductive like scaled pointclass I" s.t. X € I'. We can also assume that there
is some further scaled pointclass beyond . We can thus find some self justifying system
(A; : 1 < w) sealing the envelope of T'. (A; : i < w) will be definable over some real z.
We want to assume that X = Aj.

By generic comparison of I'-suitable z-premice we can then find some P(7) € HODx
s.t. P(z) := P(7) [g] is T'-suitable and has a I'-fullness preserving iteration strategy with
branch condensation guided by (A4; : i < w), call it ¥*. ¥* | HODy € HODx and is a
(ut, ut)-iteration strategy there. Using the arguments from [Ste05] (Lemma 1.25) one
can extend this to a (k, k)-iteration strategy over HODx.

(Here one uses that Lp' (a) < Lp(a) for every a € HODy. Given a countable hull M (a)
somewhere in V', we can make this hull generic over HODx. Using both homogeneity
and the absorption properties of the collapse, one gets

IFCol(w,u) M (@) has a (w,w; )-iteration strategy.

This argument can be found in [BS09].)

Using the w-stack technique from [SZ08| (page 43 ff) one can show that this strategy
determines itself on generic extensions. Using this and the fact that any iteration tree of
lenth <k is <k-generic over HOD x we get that ¥* extends to a (k, k)-iteration strategy
with condensation over V' and is ODx (see proof of Lemma 3.2).

We want to show that M inherits this strategy. 3 [ P(z)|0 can be defined over P(z).
X(T), T € P(2)|0 is by %, is the unique branch b s.t. ”_gélz()w,é) (z,9) € TZ)(Z) where &,y
are names for reals that are forced to represent 7 and b respectively. The fact that there
always exists such a b can be reflected to P(z) using genericity iterations.

Using this and the stationarity of background constructions one then shows that M
iterates into the background construction. The background construction, of course, in-
herits an iteration strategy from P(z) which in turn is inherited by M. So M has a
(K, k)-iteration strategy that determines itself on generic extensions. Lemma 3.4 takes
care of the rest. 4

Lemma 3.8: Let a € HODx [g] be countable. Let M be an a-premouse of Lp-type that
is strongly generically (On, On)-iterable over HODx [g]. Then there exists an A € Ffig
s.t. L(A,R) = M is (w1, ws)-iterable .

PROOF: Let X be M’s unique iteration strategy. By Lemma 3.5 applied in V' [g] we have
that M3 exists. Thus L(R,Y | R) = AD. As X will be ordinal definable in that model
it will also satisfy © = 6 as needed. 4

As an important corollary to the two prece)((iing lemmata we have:
Corollary 3.9: Let a € H1OPx then Lplis(a) = IHOPx19)(4).
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We can now assemble our maximal model. Let Sff,g := L(Lp™ (R)).
Lemma 3.10: 'Y = P(R) N SX,.

PrOOF: If A € T')Y, then L(A,R) = AD +6 = 6, thus, by Corollary 2.44, A is contained
in some R-premice M all of whose countable hulls have (w;, w;)-iteration strategies inside
of L(A,R). By Lemma 3.7 M < Lp™(R).

On the other hand by Theorem 2.54 Sﬁfg = ADT. We are done if we can show that
Slfg believes "I am Lp(R)", because it then satisfies ©® = 6y and its sets of reals are
therefore contained in Fi g Solet M < LpT(R) and let M be any countable hull. By
definition M is generically (On, On)-iterable. By Lemma 3.8 we have that the iteration
strategy for M is in T\ and therefore in S¥ . Thus S;¥, = M < Lp(R) as wanted.

4 A HOD pair for ijg

Lemma 4.1: LetY be good. Let M be its collapse. A, R, etc the collapse of those things.
Let a € VM [g] then TMI9)(a) = 1(a).

Proor: We easily get IM (a) < 1(a) so we only need to take care of the other direction.
Let N < I(a) project to a. By Lemma 3.1 Lp(A) € M. Clearly, I(A) < Lp(A) so that
too is in M. Let n < K s.t. a has a name in V,IM. Note that VUM is generic over the

structure being coded by A. Using S-constructions we can show that
1(A) [V;"] 9] = WA [V;"'] [g]) € M [g].
Let now
D= {(x,y, T,0)|z € A[V;M] [g].y S L), pu(y) < @, T is by Ty, b =2, (T)}.

D is OD from A [VHM] [g] which is countable in HODx [g]. By mouse capturing - which
we can apply here by Corollary 3.9 - D € I(A [VnM] [g]), thus D € M [g]. From D we
not only get N € M but we can easily define an (n, n)-iteration strategy on M [g] for it.
Now that strategy is unique so we can collect the iteration strategies we get for different
7 into a (R, k)-iteration strategy. Now the proof also works in M [g] [h] for every o < R
and every h C Col(w, ) generic over M [g] with h € HODx [g]. So M believes that N
is generically (R, 7)-iterable, but it also believes that any such N is actually generically
(On, On)-iterable. QED! 4

Remark: Note that whenever Y is good and M is its transitive collapse and h is generic

over M [g] for a <k-size forcing notion then I(-) | VRM[g][h] € M [g] [h]. What we do not

know is that MM (q) = 1(a) for all a € RN[[Q] "} o1 even that it is definable over M [g] [h]
from parameters in M.

Set @ig := ©5is and Pj( := HODShs H(@fig)*“’ (by homogeneity this is independent
of g). Given a good hull Y and 7 : M — Y the reverse of its transitive collapse,
write P” for the preimage of 735( under 7. For a € HEP DX we might also consider

SX w
P (a) := HODG"? [[(© ) 1.
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Lemma 4.2: Let Y be a good hull. Let M be the transitive collapse, m the reverse
collapse embedding. Let a € VM and assume there is b € HEPDX[g], o:1¥a) = bin

HODx [g] s.t. there is 7 : b — w(1¥(a)) with m = Too. Then b =1%(o(a)).

PROOF: Let T be the tree of a scale on the universal X7 set in Sﬁfg. By mouse cap-
turing all bounded subsets of OnN1"(a) in L [T,1¥(a)] are in 1" (a) which is in M by
Lemma 4.1. So we can form the long extender ultrapower of L [T,1*(a)] by o which
can be embedded into the long extender ultrapower of that model by 7 [ I“(a). So it is
wellfounded by countable completeness of w. Write o™ for the ultrapower embedding.

Let n be minimal s.t. o(I""!(a)) is missing a mouse, call it N. Fix k < w s.t. (T)y
projects to

{(z,y,2)|z codes c € HSIODX[g], (y,2) code (N',N"): N'aN" <1(c)}.

So we have (z,y,z2) € p[(T)g] for any real x € HODx [g] coding o(I"(a)), any real y
coding o(I"*!(a)), and any real z coding N. By standard arguments the same then
holds for o ((T)g).

On the other hand the following holds in any Col(w,I""!(a))-generic extension of
L[T,1¥(a)]: "for any real x coding I"(a), for all reals y coding I"*"(a) there is no real z
with (z,y,2) € p[(T)k]."

So a corresponding statement holds in L [0F(T), b]. Now we can take in HOD x [g] some
h C Col(w,a(I"(a))) generic over L[0T (T),b]; for any (x,y) coding o((I"(a), 1" (a))
there is then some real 2 s.t. (z,y,2) € p[(cF(T))x] as witnessed by any z coding N.

In L [0 (T),b] [h] by absoluteness for any (z,y) coding o((I"(a),1""*(a)) there is then
some z with (z,v,2) € p[(6F(T));] and z codes some structure end-extending o (I"*1(a)).
Contradiction! 4

Lemma 4.3: Let Y be a good hull, m : M — Y be the reverse of the Mostowski collapse.
P™ has a (w1, w1) T'X -fullness preserving iteration strateqy ©™ in HODx [g]. Furthermore,
> | HODy € HODy.

PROOF: Let (B; : i < p) be an exhaustive list of all Col(w, 1)-names that are forced to be
sets of reals, ordinal definable in Sﬁfg. Let (Cp, :n < w) = (B? :i < pu) in HODx [g]. By
elementarity P™ is a pseudo-iterate of a C),-strongly iterable (Fff g—)suitable premouse.
Hence P7 is strongly Cp-iterable for all n < w.

Now, given a suitable premouse Q, strongly Cy-iterable for all & < n, we let TkQ be the
canonical term capturing Cy, let 72 be sup(HullQ(TkQ k< n)N <) and let HS be the
transitive collapse of Hull(y2 U {72 : k < n}).

Defining ¥ on an appropriate 7, there are three possibilities:

If 7 has a fatal drop, i.e. T>4 can be considered a tree on I(M) for some a < 1h(7") and
cutpoint initals segment M of M, then (7)) is the branch given by I(M)’s canonical
iterations strategy.

If T does not have a fatal drop and some @ < I(M(T)) defines a counter example to
5(T) being a Woodin cardinal, then 3(7) is the unique branch b with @ = Q(b, T).

If IM(T)) = 70(T) is Woodin”, then let us write Q := I“(M(T)). By strong iter-
ability there exists for every n < w branches that will move T]P " to T]-Q for all j < n.
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Hence their restriction to Hull”™ (47" U {7';)7r : 7 < n}) will be canonical. We can then
string together these embeddings into

o :P™ =Hull”" (67" U {TJPW cj<w)) — Hullg(ﬁ U {T].Q 1j<w})

where 3 := sup(vng). We can do the same for the direct limit embedding from HullQ(vnQU

n<w

{TjQ : 7 < n}) into 735 and thus get 7 : Hull(3 U {TJ-Q 1 <w}) — 775 with m =7 o00.
Let O be the transitive collapse of Hull?(3 U {TjQ :j < w}) and let 7% @ QF — Q
be the reverse of the Mostowski collapse. Then the triangle of (7*)~t oo : P™ — Q*,
Tom* . QF — 735 and 7 : PT — 735 satisfies the requirements of Lemma 4.2, hence
I[(Q*||B) € Q* and by elementarity Q* = 75 is Woodin”. By suitabality of Q we must
have O* = Q and § = 52. So we can amalgamate branches b, with canonical images
on vF" into one b which is then unique as its image is cofinal in 8. Let this branch be
(7).

Note that b can be defined from <Bz : 1 < p) and does not depend on the choice of
(Cp, s n < w). It should also be easy to see that the B; can be chosen to be sufficiently
homogeneous s.t. the restriction of ¥ to HODx is in HODx as desired. ( We can pick
names 8.t.

oty Bi = {z € R[S,y = oz, Bi)},
for 5; from M.) 4

Note that ™ has a realization property: for any 7 on P™ by X7 if the tree embedding
7T . P™ — M7 exists then there exist 7: M7 — Pj( st. T=T1om!.
Lemma 4.4: LetY be a good hull, m : M — Y be the reverse of the Mostowski collapse.
X7 extends to a (k, k) iteration strategy (X7)* which condenses for good hulls, i.e. if M
is the transitive collapse of a good hull, then ((X™)" )M =x™ | VM,
PrOOF: The proof is by simultaneous induction: we can use the usual proof (see [Ste05]
Lemma 2.15) for the extendibility, i.e. we find a good stable hull and amalgamate all
the branches through hulls of our tree as long as we know that good hulls of our tree are
actually according to ™. So let us assume for some tree 7* we have just constructed a
branch b* using stable good hulls. Let us now take M the transitive collapse of a good
hull containing 7* and b*. Let us write 7 and b for the preimages.
Cram 1. (ZM)M =37 [ H.
PROOF OF CLAIM: Because M is good we have that (B; N\ M [g] : i < p) € M [g] where
(B; i < u) are sets that guide X7 as in the proof of Lemma 4.3, but from this it is easy
for M to identify the correct branches. O
Let & € b be arbitrary. As b is cofinal it is enough to show that £ € ¥™(7). M
will believe that there exists some stable good hull M’ with preimage T of T s.t.
e mymm” [(E”)M(T)] But by elementarity M’ is actually good and stable, so then,
because T is a good hull above T, we'll have 7 " [(E7)M(T)] € (7). -
Let now Y be good and let w : M — Y be the reverse of the Mostowski collapse. Let
(Bi 11 < p) be a sequence as in the proof of Lemma 4.3. By choice of the sequence,
points defined from terms for the B; are cofinal in 67" .
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By continuity at 67" these points are mapped cofinally into @fi g by the direct limit
map. We can thus fix a subsequence of which we can assume that for all good Y the
appropriate sets of terms will contain that sequence. Henceforth this sequence shall be
named (B; : i < p).

We will now define extended terms for (B; : i < p). They will be crucial in showing
that 37 as above determines itself on generic extensions, though we will not be able to
fully prove this until the end of this section.

Fix 7; for ¢« < p a standard term capturing B;. Let a < k, we define extended terms
B; o by LlFcow,a) 0 € B; .o iff "there exists a non-dropping iteration tree T by (X™)* of

size < a s.t. 1 IFgoi(w,a) 3h C Col(w,zT(ép )) generic over M7 s.t. 0% € i7( Z-)h”.
Lemma 4.5: 733( has a (k, K)-iteration strategy in HODx [g].

PRrROOF: Let Y be good and let m : M — Y be the reversed Mostowski collapse. We will
show that X7 | (Vx)Ml9) € M [g]. By elementarity this will finish the proof.

Let 7 be by ¥™ in M [g]. We want to show that ¥7(7) is uniformly definable over
M [g]. We want that 7 is countable there. If it is not fix h C Col(w,7) generic over
M [g] in HODx [g].

In M [g] [h] we can search for @Q-structures in I[(M(T)). By Lemma 4.1 the Q-structure
is in M [g] and uniformly definable there. By absoluteness X7 (7) € M [g][h] and by
homeogeneity of the collapse then X7 (7)) € M [g].

If T is maximal consider the following: it should be easy to see that (Bm nMh =
B; N M [g] [h], this is because of the condensation given by Lemma 4.4; we can identify
the target model of our branch easy enough, it is N := I*(M(T)) which ,crucially, is in
M [g]; for every i < pu we have 7' € N a term for B;; from the point of view of M [g] [h]
we'll have "(7N)" = N [W]N(BiaN M)"for all ' C Col(w, V) generic over N, i.e. 7V
is the standard term for (B;q N M)h from the point of view of M [g] [h]. Thus 2(’7') can
be identified as the branch moving all those terms correctly. A standard absoluteness
argument shows that it is in M [g]. 4

Our priority at this point will be to get an w-suitable pair. We will first construct some
w-suitable premouse and some (wy,w; + 1) strategy for that premouse. Using the derived
model theorem we can then show that some tail will satisfy branch condensation. From
that point on it will be relatively simple to get generic extendability.

Take an increasing sequence (ju, : n < w) of good cardinals with g > p. We will have
sup p, < k. Fix some O-closed ordinal v € (u, puo).

n<w
Inductively define Q(n + 1) as PX (Q(n)) (Q(—1) := 0), let 62 be the top Woodin
cardinal of Q(n) (69, := 0). Let Q= := |J Q(n) and let Q be the minimal segment

Mn+1
n<w

M of 1(Q7) s.t. p,(M) < sup 02 if it exists, otherwise Q := I(Q7). (Depending on
n<w
one’s precise definition of lower part closure like structures this may be redundant, but

we want to be precise here.)

Let us now fix some good hull Y with 7 : M — Y the reverse of the Mostowski collapse
and @ € Y. Let P be the preimage of Q under 7. Let 5773 refer to the Woodin cardinals
of P.
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Lemma 4.6: In any Col(w, v)-generic extension of HODx lg], P has a fullness preserv-
ing iteration strategy defined for stacks of the form <T a < B) where if a+1 < (3 then
T has a last model M, the tree embedding v : P — M exists and 7'a+1 s a stack that
concentrates on a window of the form (v(6F7),u(67,1)) for n € wU {—1}. We will have
that the restriction of this strategy to HODx [g] is in HODx [g].

PRrOOF: First note that by Lemma 4.5 applied to each Q(n) we have a (k, k)-iteration
strategy X, in HOD [g] for iteration trees based on the window (62, (57%1) which extends
to Col(w, uy)-generic extensions. We will only define the strategy for normal trees, it
should be easy to see that we can extend this strategy to stacks of the required form as
well.

Fix some h C Col(w, v) generic over HODx [g].

We will inductively define strategies for P(n) s.t. for every iteration based on P(n) with
last model R, R can be realized into Q(n). This not only guarantees well-foundedness
(let o be the iteration embedding, then Ult(P; o) can be embedded into Ult(P;7).) but
also fullness (by Lemma 4.2).

Now let us assume that the strategy for P(n) has already been defined. Let T be an
iteration tree based on P(n+1) of size <v™ in HODx [g] [h], let T, be the part of it that
is based on P(n) with last model R, iteration embedding o and realization embedding
7. So we have the following commuting diagram:

/
\

Call the rest of the tree 7". We will want to iterate according to 37 ;. Let us see
that this works:

Take a good at ppy1 hull of the whole situation. Let «* : M* — Y™ reverse the
transitive collapse. T € M* [g] [h]. The above diagram then extends:

Q(n+1)

Tﬂ*

*

P (Q(n))

Q(n+1)

P(n+1)

Remember that Q(n 4+ 1) = Pj(H(Q(n)). Now copy 7™ onto P™ (Q(n)). We then
have:
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R < e (o))
* (m*)~tor
R* T R

If we assume that 7" is by X7, then it should be easy to see that (T”)(”*)_IOT is by
2211 (this is because the cardinality of the tree is small).

But it is also by (7*)71(2,.1) - because of hull condensation relative to good hulls for
Y41 - which is a strategy which picks realizable branches. So we have:

Q(n+1)
TR )
\()(w*)lor/
P (Q(n))

Putting everything together we get:

Qn+1)
R** 7r*
Tn)(rr*) lor
- P (Q(n))
R*
Uz—n (m*)"lom
P(n+1)

The outer triangle P(n + 1), R*, Q(n + 1) with the maps ¢* o o, 7" o 7*, 7 is then as
wanted. 4
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Let us write ¥ for the restriction of the above strategy to HODx [g].

We can now show that Q is not anomalous, i.e. Q = I(Q7) or equivalently P =
I(7=1(Q7). Otherwise let m be minimal s.t. p,(P) < 67, and let P* be the appropriate
core. We then have that P* as a mouse over P(m) is of Lp-type. It then follows that by
the previous lemma P* is generically (v, v)-iterable in HOD x. So by Lemma 3.4 we have
a (On, On)-strategy A for it. So then we'll have A [ R € Sfjg by Lemma 3.8. The new

set it defines, call it a, is then ODSivg (P(m)), on the other hand by mouse capturing we
have a € I(P(m)) C P. Contradiction!
We are now going to borrow some notation from [Ste].

Lemma 4.7: D(P,\) D S/ifg, where \ := sup 67 .
nw

PROOF: Let M* be the collapse of some good hull s.t. P € M*. Set R* = RN M*[g],
and let h C Col(w,R*) be generic over M*[g]. Let (P"™ : n < w) be a R*-genericity
iteration in M* [g] [h]. By construction of ¥ every P" is realizable into Q, and thus so is
the direct limit R of this iteration.

By Lemma 4.2 we thus get R = I“(R||\*) where A\* is the image of A under the direct
limit embedding. Using S-constructions and mouse capturing we then get R(R*) D
I“(R*), so if we can get I(R*) = (LpT)M 9(R*) we are done. On the one hand surely
MY (R*) < (LpT)M'9}(R*) but also IM" (R*) = I(R*) by Lemma 4.1, and on the other
hand (LpT)M 9}(R*) < I(R*) by definiton of (Lp*)HOPxl9/(R). -
Lemma 4.8: Let i < p and n < w. Then there exists a tail (P*,¥X*) of (P,X) s.t. for
every tree T on P* by X* with a last model Q* and branch embedding v : P* — Q*, and
every tree U on P* of limit type and t-realizable branch b, b does not drop and izlf moves

* u
Tgb_ (n) correctly, i.e. to ngb (n). Note that /\/lzbl is w-suitable by Lemma 4.2.

PrOOF: This is Lemma 2.39 from [Sar14|. For the reader’s convenience we will reproduce
the argument here.
Assume not! Thus there exists a tuple (POF Tp, Uy, by, 0%F : k < w) s.t.

o PO =P;

o PUF+L g an iterate of P%% by that one’s ¥-tail strategy as witnessed by Tg, let
i%F be the iteration embedding;

e U, is an iteration tree on P%* of limit type according to the Y-tail strategy, by, is
a cofinal i%*-realizable branch through U, ¢%* : RO* .= MZ? — POkl g the

realization embedding;

o HC= ) P #

Let P% be the direct limit. We will inductively define a genericity iterations (P4 :
I < w)and (RYF : 1 < w) on POF above PY*(n) and R%* above R%¥(n) respectively.
Assume that (PY* : k < w) is already defined. First we will copy it onto R%* using
j%%. This works because the Y-tail strategies are pullbacks of a strategy on Q and R%*
is iterated by the o%F-pullback of PO**l's iteration strategy. Crucially, all the maps
commute. This copy-iteration is immediately followed by a standard genericity iteration.

32



Let us write P“* for the direct limit of the (P"* : | < w) and j** : Pwk — RYF and
oWk . Rwk _ pwktl for the copy maps. Let us write P for the direct limit of the
Pk under %k,

CrLAIM 1: PY% 45 well-founded.

PROOF OF CLAIM: Let (P : [ < w) be the result of copying all the (P"* : 1 < w)
onto P in sequence. We will then have that P is isomorphic to the direct limit of
(P : 1 < w). By the above this is essentially an iteration by ¥ and thus well-founded.[]

o 3¢ 0 %0 1
P R 2 P
1,0
PLO I 10 ol pL1 Pplw

P00 70 RO0 o0

'PO,I fPO,w

Let us now fix some & < @ff s.t.

B; = {z € R|Lp(R) = ¢(z,&)}.

By the claim there must exist some k < w s.t. " fixes £. On the other hand P«*

w,k
" Tgi (n) is the term for the set of reals satisfying ¢(+, &) in Sﬁfg”, and so does
Pwktl Note that by the previous lemma Sﬁf 9 is uniformly definable in the derived model

w,k w,k
of P¥*_ Thus j”’k(TgZ_ (n)) = Tgi (n), but then agreement between j“°* and j%* gives

a contradiction! 4
Corollary 4.9: Some tail (P*,X*) of (P,X) has branch condensation.

PROOF: By chaining iterations we can find a tail (P*,X*) that satisfies the lemma for
all B; simultaneously. We will see that this works. First note that by letting U be T
without its last branch, b = ¥*(U/) and o the identity we see that ¥* picks branches that
move all terms correctly (unless there is a drop). Because terms define a cofinal subset
of our Woodin cardinals, this completley determines ¥*.

Now, if (P**,X**) is a tail of (P*,X*) and U is a tree on P* by X* and b is a branch
through U that can be realized into P** then b moves all terms correctly and hence
b=X*U). -

W.lo.g. assume that P* = P and ¥* = ¥. We can now almost finish the proof.
Lemma 4.10: X determines itself on generic extensions.

PRrROOF: Let Y* be some good hull and 7* : M* — Y* the reverse of the Mostowski
collapse. Let h € HODx [g] be generic over M* [g] for some <& forcing notion.

believes:
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Looking at the proof of Lemma 4.5 we can easily see that ¥ [ M*[g] € M*[g],
furthermore the only obstacle to finishing the proof is that we lack a reliable way to
identify I(a) for a € M* [g] [h].

We have that (B; N M* [g] [h] : i < pu) € M* [g] [h] using (Bia : i < p,a < K) € Y*.
Using genericity iterations we can show that

(HM) e (BN M*[g] i < p)) < (HAOIM € (B0 M* [g] [1] - i < ).

We only need to have a strategy in M*[g] as we can always make names for reals in
M* [g] [h] generic. Standard facts about capturing sets at Woodin cardinals then do the
rest. (Note: For example see [SS| Section 1.4)

Now w.l.o.g. we can assume that

By = {(z,y) : x codes a € H,,,y codes Lprf)f(a)}.

By the above we then have for all a € Hﬂ/f*[g“h] that for all reals x coding a there exists
some real y s.t. (z,y) € BoN M*[g] [h]. Any such y will then code Lptis (a) = I(a) as
needed. 4

¥ then extends to a (On, On)-iteration strategy over V' [g] and by Lemma 3.5 we have
Mf} #, Furthermore, ¥ | R can not be in Sff:g because it defines a prewellorder of length
G)ff. Thus,
L(Z | R,R) = ADT +6 > 6,.

5 Reaching the limit stage

Let now a < k we want to show that whenever h C Col(w, «v) is generic over V we have
that ¥ extends to a ZFC-fullness preserving (k, k)-iteration strategy. W.l.o.g. « is good.

Let X be the extension of ¥ to HODy [h]. Let M := (Lp*)HOPx[(RHOPx[) 1t will
be enough to show that X" is Ff p-fullness preserving by the results of Section 2 and the
fact that good a’s are unbounded in x.

Let D* be the derived model over (P, ") in HODx [h]. Remembering our extended
terms (Bjo i < ) let Bf := Bzha and I'* be the pointclass in HODx [h] generated by
the Bf. We'll have I'* C D* because X" does move terms for B} correctly.

On the other hand we’ll have L(B;, RHOPxhl) = AD* 1.0 = 0" for all i < y, hence
I'* CT'X,. As D* believes "P is strongly Bj-iterable" for all i < y, it will be enough to
show that equality holds.

Assume not. Then there is a set A € Fgf ,, that every set in I'* is Wadge reducible to.

But X" on countable trees can be computed from I'*, hence X" | HEIODX[h] eM.

Let now be Q be an element of HOD-directed limit of M. Let Y be a good at « hull
containing a name for Q. Let Q* be the image of 775 ;, under the transitive collapse. By
the results of the previous section we have that Q*’has a fullness preserving iteration
strategy. Also, Q* is clearly a pseudo-iterate of Q.

We now want to compare Q* with P(0). We want to show that they iterate to a
commom model. Note that the co-iteration takes place in HODx. Let 7 € HODx be a
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<k-iteration tree on P by . Take a good at p hull Y containing 7. Let 7 : N = Y be
the reverse of the Mostowski collapse. Then 7~1(7) will be by ¥ and thus its last model
(if it exists) will be full. By Lemma 4.1 N recognizes that fact and reflects it upward.

In conclusion, any <k-iterate of P by ¥ in HODx (!) is (ZFC)-full. By standard
arguments then Q* and P(0) iterate to a common model which is a pseudo-iterate of Q.
Notice then that the direct limit of countable iterates of P by £ in HODx [h] computes
a pre-wellorder of length at least @fi - But this direct limit can be computed in M.
Contradiction!

We could now try to repeat the argument relative to some (P,X) as above to get a
model of ADT 40 > ;. To do that we now have to pick X’ that is cofinal in Lp¥(A’)
where A’ codes VHOPX in some straightforward fashion. As we do not have even minimal
amounts of choice in our ground model this approach will never get us beyond finite stages
of this process. We have no choice but to isolate our HOD-pair from the choice of X.
Lemma 5.1: Let X C On and let n < k. Let P € H}?{PDX and ¥ a (nt,n")-strategy
over HODx be s.t.

e (P,X) is a HOD-pair, ' is limit of non-measurable cofinality in P, ¥ has branch
condesation, determines itself on generic extension and is ZFC-fullness preserv-
ing for <k-iterates absolute to <rk-generic extensions, i.e. whenever T is a tree
on P by X of length <k with last model Q) the main branch does not drop, then
[P~ (Qlly) € Q for all B <\ and all cutpoints v above Q(B)~,

e or (P,X) is a w-suitable A-pair s.t. A has branch condensation, determines itself on
generic extensions and is fullness preserving for <k-iterates absolute to <k-generic
extensions where (Q, ) is a HOD-pair s.t. A has branch condensation, determines
itself on generic extension and extends to an OD over V (On, On)-iteration strategy.

Then there exists a tail (P*,X*) which is OD over V.

ProOF: Let g C Col(w,n) be generic over V. We define a pointclass I": in both cases
we can form a derived model over (P,¥) in HODx [g¢], call it D. Let I' := P(R) N D.

Let A € T', then A is universally Baire. Let o be an ordinal write (), for the unique
Q s.t.

1 IFcol(w,a) Q is the direct limit of all <o — S iterates

holds over HODy [g]. Write then T2 for the tree searching for € R, a countable
nowhere dropping iteration tree 7 on P with last branch b, ip g, -realisation embeddings
for every limit stage of 7 including for b (certifying that 7 is by X) and some generic h
over M} with z € (i (§))*. A complementing tree UZ' is defined similarly.

Because of the Vopenka algebra this u.B. presentation also represents a u.B. set over
V'lg], call this extension A*. Building the derived model of P over V will show that
L(A*,;RNV [g]) = AD". We can assume that there are no diverging models of AD, so we
have I'* extension of ', all sets u.B., determined and well-foundedly Wadge comparable.

Note now that the sequence of @, for ©-closed a is OD. That is because if (P*,¥*)
were another pair like it at the same p but possibly over some HODy generating the
same pointclass, they can be compared in V. The successful co-iteration would then
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be <a-generic because of the Vopenka algebra. Crucially, here I'* is definable from its
Wadge rank.

The same holds true for the sequence 7, g : Qo — @, @ < 3 ©-closed, of the iteration
embeddings inbetween them.

The tail ¥, on @, for <k trees can then be defined thusly: let 5 > 1h(7T), T by X4,
Yo (T) is then the unique branch b s.t. there exists o : MZ' — Qp with mo 3 =00 i;r or
b has a generically (On, On)-iterable Q-structure. 4

Lemma 5.2: Let P € HT?JFOD, ¥ be as above. Let A C k code VHOP in some straightfor-

ward fashion, let X C Lp*(A) be cofinal of ordertype w. Let p < r be max(¢,n)-closed in
HODx. Then there exists (Q,A) a w-suitable X-pair s.t. A has branch condensation, de-
termines itself on generic extensions and is ZFC-fullness preserving for <k-trees absolute
to <k-generic extensions.

PROOF: This is just a rehash of the previous two and a half sections. Let g C Col(w, )
be generic over V. We work with M := (Lp™¥)HOPx[g)(RHODxdl 33 HEIODX[g]). This
works the same as (Lpt)HOPx[9/(R) in the previous sections, using the appropriate results
from [STDh].

Note that the tree of the scale on a universal (X%(X))M set only exists in HODx [g | 1].
So we need to make sure that our good hulls are still countably closed in HODx [g | 7].

We skip further details. 4
Lemma 5.3: Let (P,X) € H7I7{+OD be as above. Then there exists a ¥ — HOD-pair
(Q,A) € VHOD st X2 = w, A has branch condensation, determines itself on generic
extensions and is ZFC-fullness preserving for <k-trees absolute to <k-generic extension.

ProoF: Working in HOD, by the above lemmata we can find a sequence (n; : i < w)
and names (I'; : i < w) s.t.

e I'; is a determined u.B. pointclass in HODC'W ) for all i < w, let Ff‘ be the
extension to HODC!w:) for o > 745

o Lp'"=(a) = I¥(a) for all @ € H,, and ¥ € T}, in HOD!@ for all o < « and
1 < w;

o Lpli " 2(q) = Lpl1:S(q) for all a € H,, and © € I, in HODCO@mi+1) for all
1< w;

e Wadge degree of I'/"*! less than Wadge degree of ;11 in HODCCI@mi+1),

We can assume that n™ := supn; < k. Let h C Col(w,n™") be generic. Let (Q, @ Aa)
i<w a<\@

be the direct limit under co-iteration of all ¥-HOD-pairs (Q,A) € HPHOPPI () s t.
A has branch condensation, determines itself on generic extensions, and is fullness pre-
serving for <k-trees absolute to <k-generic extensions for some i.

We can assume that Q has exactly w Woodin cardinals above P, otherwise there
is nothing left to show. Notice that @ € HOD and so are the restrictions of A, to
HOD. Write A := @ A,. Let now A code VHOP in some straightforward fashion. Let

n<w
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X C LpA(A) be cofinal of ordertype w. Let n™ < 1 < k be some ©O-closed cardinal that
is ¢-closed in HODx. Let g C Col(w, i) be generic over V.

Working in HOD [g], let (@1, AT) be the direct limit of all countable X-iterates. We
say some hull Y is good iff it is closed under max{¢,n*}-sequences, Q*, Lp*(4) € Y,
1 CY and Y has size u. We will show that some preimage of Q™ under a good hull is
as wanted.

Let QFF :=TI27(QT). Let Y be a good hull, and let 7 : M — Y be the reverse of the
Mostowski collapse. Let (Q™, A™) be the m-pullback of (Q**, AT). Similar to the proof
of Lemma 4.1 we can show that M is closed under I*, but this also gives closure under
Y whenever (Q*,A*) is a tail of (Q,A) in M, as A* is OD in A and Q*. ( A result of
positionality for HOD-pairs, see Lemma 2.39.)

We now claim that A™ is a fullness preserving iteration strategy on Q™. There is
a canonical candidate for an iteration strategy. We only have to show that given 7 on
Q™(n) by Al with non-dropping last branch b, we have Ult(Q™, EibT) is wellfounded and
full. But Q™(n) is a tail of (Q(n), A,,), so b is m-realizable, and hence that ultrapower is
realizable into Q7. Iterability then follows easily.

Note that we easily get that A™ is fullness preserving on Q" (n) for any n < w. To
show fullness preservation at the top is more tricky.

First let us show that p,(Q™) > 53”. Assume not. Let n be minimal s.t. p, < (SnQﬂ.
Let (R, ®) be the appropriate core, and a the new set that is defined over R. We
have that Ma# exists and hence L(RHOPx9) @ | HOIJ{IODX[Q]) E AD. By maximality of

I':= I.’Z_H we’ll have ® € I" and hence that a is ODi(F’R). On the other hand iterating

Q™ above 67?77 will generate HODiiDR)
Contradiction! /

We’d like to use Lemma 4.2 to prove fullness at the top, but we need to make some
adjustment to the proof: We’d like a tree that projects to the set of quadruplets (x,y, z, q)
s.t. r codes an HOD initial segment of (R, A*), some A-tail, x codes some set in H,,,
y,z < LpN (z) and y < z. This set is ODy. This uses that strategies from HOD-pairs
are positional, otherwise we would have to put in the iteration going from Q to R as
well.

Let N := (Lpt")HOPxIg](RHODxdl A | HEPDX[Q]). We can use a tree 7" on the
universal (32(A,-))" set which exists in HODx [g | nT]. Crucially, M [g | nT] is still
w-closed.

Clearly, A™ determines itself on generic extensions, as its components do. We’ll skip
further details. 4

n

which means that a is still a "new" set over it.

6 Up to "O regular"

Now, let (QX, Ag,() be the unique (Q, A) s.t. in any Col(w, a)-generic extension of HOD x
(Q, A) is the HOD-limit of all HOD-pairs (P, X) s.t. ¥ has branch condensation, deter-
mines itself on generic extensions and is fullness preserving for <x-trees absolute to
<k-generic extensions. Here a < k is O-closed and X C On, if X = () we will drop it
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from the notation. If 3 is a limit of ©-closed cardinals, we let (Qfﬁ, Afﬁ) be the obvious
thing. We'll have (QX, AX | HODx) € HODx.

Let \Y := A9 . Whenever a < B are ©-closed we have an iteration embedding
Jiﬁ : QX — Qp that is ODx by the results of the previous sections.

Let now A C x code VHOP in some straightforward fashion and let X C Lpi<r (AU
{Q«x}) be cofinal of ordertype w. Let pu < k be (-closed in HODx. For convenience’s
sake we will drop the subscripts in O, and A..

We say a ¥ < H}fODX for some carefully chosen 1 -note again that there are club
many such 7- is good iff Y is ¢-closed, Lp*(Q),Lp*(A) € Y, u C Y and Y has size p.
As usual, we will write Z for the image of any z € Y under the transitive collapse.
Lemma 6.1: Let o < ), then Q||((62)1)9 is the stack of all Ag(a)--premice M s.t.

M < 12w~ (171 Q|162)) for all T : M — M of size B where B is minimal s.t. Q(a)
has a preimage of size 5 in HODx.

PROOF: Let us fix @ < XA and 8 < k as above. Let us first consider some M <
QI((6£)1)<, and let 7 : M — M be a hull of size 8 in HODy.

Let Y < HTEIODX be of size § containing both 7 and some preimage (P, X) of (Q(«), Ay)
where P has size 8, X2 has branch condensation, determines itself on generic extensions
and is fullness preserving for <s-trees absolute to <x-generic extensions.

Let 7 : M — Y be the reverse of the Mostowski collapse. We'll have that 7= (Q(«))
is an actual Y-iterate of P. By fullness preservation of ¥ we get that m—'(M) <

16 (771 Q]|62)). M is then a hull of 77 5(M) as witnessed by 7'(7) and hence

1

M < 1% (1) (7=1(Q]|52))) and therefore M < T e@- (7-1(Q||52))
as wanted.

Now let M be with the above property. We will show that M < Q||((62)7)2. Let Y be
a hull as above with M € Y and 7 : M — Y be the reverse of the Mostowski collapse. We
have that 7=1(M) < () (771(Q|62)). On the other hand 7~!(Q(«a)) is a -iterate
and hence 771(QJ|((62)7)Q) = I" @@~ (x71(Q||69)). So, 71 (M) < 7~ 1(Q|((52)")2)
and hence M < Q||((62)1)<. 4
Lemma 6.2: LetY be a good hull, m : M — Y be the reverse of the Mostowski collapse.
Let o < \. Let T be an iteration tree on Q7 (o) := n~1(Q(n(a))) by A7 () of length <k
existing in some <k-generic extension s.t. T has a last model and there is no drop on
the main branch. Then there exists some 0 : M7 — Q(n(a)) s.t. m = o oi’, where M7

is the last model and i7 the branch embedding. So, A™ is a m-realization strategy.

PROOF: Let f < k be a O-closed cardinal s.t. Q(w(a)) is the tail of some (P,X) €
HPHOPx(3+) s.t. % has branch condensation, determines itself on generic extensions
and is fullness preserving for <k-trees absolute to <k-generic extensions. We can also
assume that 7 exists in HODx [h] where h C Col(w, ) is generic over V.
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We start with the following situation working in HODx [h]:
M™T

Q(m(a))

™

Here o is the copy map. Now let Z < HEODX be of size 8 with 8 C Y and everything
relevant in it. Let 7 : N — Z be the reverse of the Mostowski collapse. Let T* :=
77 1(7nT) € N[h] and Q* := 771(Q(7(a))), identifying 7 with its extension to HOD y [h].
On the one hand by elementarity we have 7* = (77! o 7)7 and hence:

MT”

On the other hand 7* is by 77 '(Ay(,)) which is just A;(a) I N[h]. (Let U be by
T_I(Aﬂ(a)), then 7(U) is by A and 7Y is a hull of it. By hull condensation 7U is by
A.) Now 7 is actually an iteration map, as Q* is a tail of (P,X). Because of pullback
consistency for HOD-pairs we’ll have that 7* is actually by the tailstrategy of (P, ).
Iteration maps commute so we have:

Q(m(a))
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Here o*x : MT" — Q(m(w)) is the iteration embedding. Putting things together we
have:

Q(m(a)) M7

Then o** o o* is as wanted. 4

Lemma 6.3: Let Y be a good hull, m : M — Y be the reverse of the Mostowski collapse.
Let o < X. Then Q7||((5€7)+)2" = 1*om@n (Q7||6€7).

PRrROOF: Inclusion follows easily from Lemma 6.1. To show the opposite direction we have
to first realize that I (@) (Q7|6€") € M. By Lemma 3.1 we have Lp?" (AU{Q"}) € M.
The rest then follows from the following claim:

CLAIM 1: Vo < X : 126 (Q7(|627) C TAT(Q™).

Proor or CLAIM: Note that A™ has branch condensation by Lemma 2.46 and deter-
mines itself on generic extensions. We can thus do a core model induction relative to A™.
To that end take some Y that is w-cofinal in LpAé(w(aD (A) where A codes V;HOPx,

For some appropriate v < k we can then work in HODx y [g] where g C Col(w,v) is
generic over V and form S := L((LptA")HOPxvlg)(RHODx,vlg] A7 | RHODx,vldl) also
let (P,X) be an w-suitable pair relative to S just like the one we constructed in section
3.

We do have as in previous arguments that Lp>*" (a) = I (a) for all a € HﬂODX*Y[g].
If we also had LpS’A&W(a))(a) S e (a) for all @ < A we would be finished by mouse
capturing.

Unfortunately, we do not see an abstract reason why this would hold, so we do have
to do a little bit more work. Fix an o < A, let Y, v/, ¢/, (P’,%’) be as above but for
AG(n(a))- et Z code the triple {X,Y,Y'} and let nu* > v,v/'. Work in HOD [h] where
h C Col(w,v*) is generiv over V.

¥, % extend to HODy [h] so we can form the derived models of P and P’ there, call
them D and D’ respectively. We must have D C D’ or D’ C D. If the latter holds we
have

"8 () = Lp” @) (a) € LpP A (a) = 1 (a)
where a € b € HQI}{lODZ[h]. As this includes a = Q“Hégr and b = Q™ we are done.
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So, assume D C D’. We then have that A™ | RHOPzhl € D/ and hence

D’,Aa(ﬂ'(a)) (a) C LpD/,Aﬁ (a)

IAE(W(G)) (a,) =Lp
but any A™-mouse in D’ is in the derived model of the generically iterable P’ and is
therefore itself generically iterable as desired. O

It is now enough to show that {A’é(ﬁ(a» (Q7||62™) satisfies the definition of Q7||((6<™)F)<"
given by Lemma 6.1. So let 7 : M — M be an appropriate hull where M < Q7||((6$™)*)<".

Clearly, we have that M < I(Ag(ﬂ(a”_y(T‘l(QﬂHégﬂ)). We just have to show that M
recognizes the fact that M is generically (On, On)-iterable.

This works just like in the proof of Lemma 4.1. We just have to show that (A™)7 is
OD in A™ from some element coded into A. Of course 7 itself is not coded into A. But
we can write 7 = o o 7/ where 7’ is coded into A and o is definable over it. o here is
just the preimage of some oéf <, for appropriate 3. 7/ comes from taking a hull and then
realizing into QX . We skip further detail. 4

Lemma 6.4: Let Y be a good hull, m : M — Y be the reverse of the Mostowski col-
lapse. Let a < X. Then, Ag(ﬂ(a)) has branch condensation, determines itself on generic
extensions and is fullness preserving for <r-trees absolute to <k-generic extensions.

PRrOOF: Branch condensation follows from Lemma 2.46, generic extensions is simply be-
cause it is the pullback of a generic iteration strategy. We will show fullness preservation
now.

Assume now that 7 is a counterexample to fullness preservation, i.e.

e 7 € HODx [h] and is countable there where h C Col(w,v) is generic over V for
some o < K;

o T is by AZ;

e 7 has a last model Q*, there is no drop on the main branch and for some 8 < A<"
and some cutpoint v of Q*, there exists some M s.t. M < 1A&) e (61~ (Q*||) but
M ¢ Q.

By the results of the previous section we can find some (R, ®) a AZ-HOD-pair s.t. ® has
branch condensation, determines itself on generic extensions and is fullness preserving.
Because @ is fullness preserving we can make T generic over some iterate of ® and that
iterate will correctly identify the missing mouse. Hence R believes: "In my derived model
there exists a witness to the fact that A, is not fullness preserving." We will also need
M,

Note that no level of R projects across Q™ (a) by Lemma 6.3. Therefore we can form
the long ultrapower Ult(R,n | Q" («)) which by countable closure of 7 is wellfounded.
Similarly, we can form the long ultrapower Ult(R,i7), this too is well-founded because
it realizes into the previous ultrapower by the previous lemma.

Let us now take Z < H};ODX be countable with everything relevant in it. Let 7: N —
Z be the reverse of the Mostowski collapse. Let h C Col(w,77!(v)) be generic over N,
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and let 7* € N [h] be a tree s.t.
N [h] = T* witnesses a failure of 71 (AT) to be fullness preserving.

Notice we have 7=1(®) = ®7 | N, for conveniences sake we will confuse them from now
on. Write 77 1(R) = R".

Let M* be an iterate of Mg * at its bottom Woodin cardinal making 7" generic.
We can assume that M* € N by only making a name generic. We'll have that M™* [T¥]
believes "in my derived model 7* witnesses a failure of (A]})” to be fullness preserving".
We use here that the terms for the strategy of 771(Q™(a) will be interpreted as (AT)7.
We’ll have that an iteration strategy for the missing mouse is Wadge reducible to ®7.

Let now o : MT" — 771(Q) s.t. 77 1(x) = 5 0iT. Let M** := Ult(Mge #;i7"). Tt is
embeddable into Ult(Mg #;771(x)) and hence, by countable completeness, into Ma#
by some o*.

Let D be the derived model of M**. We then have ®” € D, as it is computable from
®°" which is the interpretation of M**’s internal strategy in D. Hence D also contains
the mouse missing from M7 . As this mouse is definable it must be in M** and because
of acceptability in M7 . Contradiction! 4

Lemma 6.5: o +w < )\ff for all a < )\ff.

PrOOF: Notice that by the results of the preceding section this is certainly true for A.
We will now reflect this downwards.

Let a be as above. Let (P, 3) be a HOD-pair s.t. ¥ has branch condesation, determines
itself on generic extensions and is fullness preserving for <k-trees absolute to <k-generic
extensions, and (P, X) generates fo(a). But, of course, (P, X) also generates Q(o\ (a)).

Let X be a good hull, 7 : M — X the reverse of the Mostowski collapse. Because P

has size p we’ll have that (Q”(W_l(af(a)),A;_l(gx(a)) is a tail of (P,X). By the above
o

lemma we then have that (Qﬂ(wfl(gff(a) + w), A:‘l(off(a)-i-w) is as wanted. -

Lemma 6.6: LetY be a good hull, m : M — Y be the reverse of the Mostowski collapse.
Then (I(Af)w))M(a) = I(Aff)ﬂ)(a) foralla € VRM[Q].

PrOOF: Note that the sequence (Q, : a < k) is OD in J;(A), and so are the direct limit
embeddings (04,5 : o < 8 < k) between them and (0a,<x : @ < k) into Q. Therefore A,
too is OD in A and A, as by pullback consistency for HOD-pairs it is the pullback of A
under the direct limit embedding.

Fix some u < « that is ©-closed. We’'ll have that Aff is computable from A, and Jl)ja.
Note that o7, € y1ODxld] Wlog opn€Y.

We now have that (Aff)’r is computed in M [g] from A™ and 71 (aa,<uoaia). Crucially,
the aforementioned embedding is actually an iteration embedding.

As we have that ﬁ_l(aia) € Alg] and 77! (0a,<,) definable over LpA™ (A) we get
Lo (A[g]) € L™ (A]g]) = Lp""(4) [g] € M [g].

The rest is as in Lemma 4.1. 4
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Let now P := IAff(fo). Let Y be some good hull, 7 : M — Y be the reverse of the
Mostowski collapse. Write 7= %(P) := Py, By = (Aff)7T and 0y for the supremum of
Woodin cardinals in Py. We will define an iteration strategy Z}t for Py s.t. for any <k-
iteration tree 7 with a last model and no drop on the main branch we have o : M7 — Q

s.t. oi@{ omr=0co0il: let U be a normal component on some M € T s.t. oy : M — Q
as above exists and U is based on some M (a+ 1), then U is by Agﬁ Egﬁ;, the realization

embedding on MY comes from taking a hull of the copied tree on Q; in the case of drops
we pick the branch with the appropriate Q-structures; we skip further details.

We want to show that no initial segment projects across fo . Assume not: Let Y be
some good hull, 7 : M — Y be the reverse of the Mostowski collapse. Let 8 < APY be s.t.
pu(Py) < 5§Y and cof Y (§¥) < 55’”. ¥y does determine itself on generic extensions so
it is contained in some determinacy model D, though we might have to move to a larger
universe to do so. Let Q be the core of Py above 5§Y and let a be the new set defined

over it. We then have a € HOD{)Zy)B on the other hand (Xy)g41 is fullness preserving,

so Py (B + 1) will iterate into a cardinal inital segment of HOD(DZ‘/)H meaning it actually
does contain a. Contradiction!

Lemma 6.7: Let Y be a good hull, m : M — Y be the reverse of the Mostowski collapse.
E; 1s fullness preserving.

PROOF: We can assume that 7 := cof”¥ (6") is measurable in there, otherwise we can
proceed just as in Lemma 6.4. We want to show that adding = to Py will not project
across. Otherwise let M < I%v (Py) s.t. p(M) < Y. We can assume that M projects
exactly to 07, otherwise we can argue as above.

Let f:n — 6 be cofinal, continuous and increasing. Let (Mg : £ < m) be a sequence
s.t. Mg C Py||f(§) codes the theory of M on ordinals < f(£) and the standard parameter.
Let U be the order 0 measure on cof 7Y (V). Let P* := Ult(Py; U) (this is the appropriate
fine structural ultrapower) and j the ultrapower embedding. Note that j acts on (Mg :
§<m).

We have that ¥* := G? Zf(;) is OD in Yy, because it is computable from U. Hence,

a<
by mouse capturing, "

PPT(Y) CI¥(P[|8Y) I (P[8Y).

Now M* := j({Mg : £ < n))(0Y) is coded as a subset of ¥ and is therefore in P. But
we can compute the theory of M from it and j [ 6¥. Contradiction!

From here on out we can proceed just like in Lemma 6.4. 4
Definition 6.8: Let Y be a good hull, 7 : M — Y be the reverse of the Mostowski
collapse. Let A € PP¥(dy) and ¢ be a first order formula with two free variables.
We say Y has (¢, A) condensation if for all countable (in HODx [g]) R together with
elementary embeddings v : Py — R and 7 : R — P s.t. v [ dy is an iteration embedding
according to Yy, then v(Tf_ ,) = Tf _ 4 where

Tg, 4= {5 € [ov]™|Py = ¢(s, A)}
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and
w DIARN
TS ap = {5 € WEIP E plmar, ) (), 7(4))}

. .. . DAy . . . .
where a; < A is minimal with s € R(as) and 7T,R7(2as) + 18 the iteration embedding from

R(as) into P by the 7-pullback strategy.

Lemma 6.9 (Sargsyan-Trang): There is a good hull Y that has (¢, A)-condensation
for all p and A € P (y).

PRrROOF: Just as in [Tra], but for the reader’s convenience we will reproduce the argument
here: let us assume for a contradiction that there exists a stationary set S of good hulls
Y s.t. there exist a first order formula ¢y and Ay c PFPY (6y) that are a counterexample
to (¢y, Ay )-condensation.

We say (¢, Yi, Z,Ri, Ai, Vi, Ti, 05 : i < w) is a bad tuple iff

e Y; is a good hull for all i < w, if i < j then Y; C Y}, write m; ; : te(Y;) — te(Yj) for
the canonical embedding;

e 7 isagood hull sit. (Y;, R, Aj, v, 7 1 i < w) € Z;

e v; : Py, = R; and 7; : R; — Py,,, are elementary, m; ;11 = 7; 0 v, v; | dy is the
iteration embedding according to Xy, for all i < w;

o A; C P™i(by,) for all i < w, if i < j then m; ;(4;) = Aj;

e 0; : Py, = MZ where MZ is the direct limit of all X z-iterates for all i < w, if
i < jthen 7, = 75 0m; j;

(T¥ ¢ :
o VZ(TPYi,Ai) # TRi,n,ai(Ai),Mfo for all i < w.
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CLAIM 1: There exists a bad tuple.

PrOOF OF CLAIM: By pressing down we can find a stationary set S* of good hulls Y s.t.
(py,my(Ay)) is constant where 7y : My — Y is the reverse of the Mostowski collapse.
Let (o, A) be this constant value. Let Y; be an ascending sequence in S* s.t. a witness
(Ri, vi, ;) for the failure of (¢, 7r§_,1_1 (A))-condensation is in Yj;1. Set A; := WQI(A). Let
Z be a good hull s.t. (Y;, R, v, 1) € Z, let m: N — Z be the reverse of the Mostowski
collapse. By elementarity and the failure of condensation we have

ViTh, 4) # {5 € ()] ™IP7 b o(mgl ) p, (), 7 (A))}
for all 7 < w where 77727(3;15)7732 is the embedding given by the direct limit of all (P, ) in
Z [g]. Let then ¢ : Pz — MZ be the direct limit embedding. It is then easy to see that
(0,Y;, Z,Ri, Ai,viyTistom L omy, 1i < w) is as wanted. O

So let A := (¢,Y:, Z,R;, Ai,vi, Ti, 04 = i < w) is a bad tuple. We can find (R, ®) €
HPES_DX (1) s.t. ® has branch condensation, determines itself on generic extensions, is

fullness preserving for <k-trees absolute to <x-generic extensions, and
L(®,R) = A is a bad tuple.

Two things to note here: firstly, A is not hereditarily countable but it is coded by a
real © € HODx [g]: 2 codes both (p, Py;, Pz, Ri, Vi, Ti, (0i)' : i < w) and a contionuous
map f s.t. f~!7 [Code(®)] codes a pair (P, ) which generates MZ and if 1 : P — MZ
is the direct limit embedding then o; = ¢ o (0;)’.

Secondly, in general we can not assume that R has size u. But if not, then we can just
replace MZ by a larger direct limit (MZ)* appropriate to the size of R. So, w.l.o.g. we
can and do assume that (R, ®) € HPHOPx(y).

Let now W := M>%. Let W* be the iterate that results from making a Col(w, p)-
name p for a real coding A generic at W’s bottom Woodin cardinal. Then W* [p] [g]
believes "in my derived model pY codes a bad tuple". Let p € Col(w, u) be a condition
that forces this.

Let now U be a countable hull that contains everything relevant, let 0 : O — U be the
reverse of the Mostowski collapse. Let p = 0~ !(p), etc. Let p € g C Col(w, ji) be generic
over O. Let (p,Y;, Z,Ri, Ai, U3, 71,5 - i < w) be the preimages.

We now write Wy := 0~ (W*). Then we define inductively f; := Ult(W;; ;) writing
v? for the ultrapower embedding and Wis1 := Ult(U;; 7;) writing 77 for the ultrapower
embedding.

We see that each of these ultrapowers realizes into Ult(Wp;my,) which in turn by
countable completeness of Yy realizes into W*. Let a; : W; — W* and B; : U; — W*
be the realization embeddings. We then have that W; is a ®; := ®“-mouse and U; is a
U, := ®Pi_mouse for all 1 < w. Tt is important to note that ®; = \Il;ji* and U; = @Zf:l
all i < w.

Now let j, : Wy, — Wi and ky, : U, — U} be the result of a simultaneous RNHOD x [g] -
hereafter just R - genericty iteration ( see proof of Lemma 4.8). Let us write [, : W} — U
and my, : Uy — Wi for the copy maps.

for
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Let C, = L(®,,R) and D,, = L(¥,,R) be the derived models of W} and U} respec-
tively. We have that C, € D,, and D,, C Cj41 for all n < w.

Our witness to "badness" is not (MZ, 5(Ag)) but instead if ((P, X), A’) is a preimage
of it in Wy [p] [g], then the HOD-limit (MZ)* of (P,X) as computed in Cp and A*
the image of A’ under the direct limit embedding is our witness, i.e. DZ-(T;Y’ 7 Ai) +

,;%iv'fivA*v(Mgo)*.

The pair ((MZ)*, A*) is definable in each of the C,, and D,,. MZ, is just the HOD of
some common Wadge initial segment of each of the C,,, D,, and A* can be defined from
its position in the canonical well-order of that HOD. Let t be a parameter defining that
pair, and let 6(-,-) be a first oder formula s.t.

X 0(s,t) & (ML)" F o(s, A)

where X can be any of the models C,,, D,,.
Taking stock, we have that

(Dn s €TE 4 iff Co = O(mpr (s),t) for all s € [dy,] <.

A'L' Yn

H_ere ”72352,00 : Py, — (MZ)* is the map g_iven by the HOD—limit_of (Py,, Xy, ) where
Yy, is simply the (secondary) strategy of Py, on the sequence of Wy.
Thus, it should be easy to see that this constitutes a first order statement over W;.

On the other hand using the "badness" of our tuple we get:

Tn,—

b
(2),, there exists s € DH(T;}Z"&) st. Dy E ﬁH(ﬂﬁfas)m(s),t).

Notice here that 272—“_ is the (secondary) iteration strategy on the sequence of .
Now, the direct limit of
Wg —1l Z/lg —myo Wik
is well-founded as it can be embedded into an iterate of W*. Therefore we can find some
n* <ws.t. Iy, my fix t for all n > n*. Let then n be such. By elementarity of [,, we have

Tn,—

) iff Dy = (7 (5),8) for all s € [7,(0y,)] <.

— © -
(3)n s € (T R ona).

Py, A;
But this clearly contradicts (2),! -
Let now Y be as above, m : M — Y the reverse of the Mostowski collapse. Let

v : Py — R be a countable (in HODy [g]) non-dropping Xy -iterate. We then have a

realization embedding 7 : R — P as required by condensation. (While we usually realize

into @, for countable trees the realization embedding will factorize through P, as can be
easily seen through a good-hull-reflection argument.)

+
Now define 0 : R — P by sending v(f)(a) to ﬂ(f)(wg(zgio(a)) where a@ < A® and
f € Py. By condensation we have that o is elementary and it should be easy to see that
o is the X -iteration embedding below v(dy).
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Let now M, be the direct limit of all countable non-dropping Z)t—iterates and v :
Py — My the embedding. Let ¢* be the direct limit of the above embeddings.
Then crit(0*) = voo(dy), hence Moo = "voo(dy) is regular”. By elementarity Py |=
7§y is regular”.

Now let M be some countable in HODx hull of ME;# M'’s iteration strategy de-
termines itself on generic extensions, so we can form D the derived model of M in V.
There exists then in D some I' C P(R) s.t.

L(I',R) =" ADgr +0© is regular”.

7 Conclusion

Our proof can be easily adapted to some different situations:

Theorem 7.1: Assume V = ZF and all successor cardinals are weakly compact and all
limit cardinals are singular. Then there exists an inner model containing all the reals
that satifies ZF + ADg +7 0O is regular”.

PRrROOF: The crucial clue is that under these circumstances all putative square sequences
are threadable. We thus have that Lp(A) has countable cofinality and so does the stack.
The only significant change is in proofing an analagouge of Lemma 3.4: we will come
across iteration trees whose cofinality is not countable. But then its cofinality must be
weakly compact. Hence any such tree has a unique cofinal branch. 4

Theorem 7.2: Let k be a singular strong limit, and assume that U, fails. Then there
exists an inner model containing all the reals that satifies ZF + ADg 470 is regular”.

PRrROOF: It is shown in [Sarl4] how to get the "next #”. We can thus form Q.. as
in the main body of the paper, we can completely ignore the superscripts here. One
major difference is that our mice will only be xT-iterable in V instead of fully generically
iterable.

Consider now Lp*<<(Q,) (skip subscripts from now on). Working in a model of
choice we must re-interpret Lp to mean that countable hulls have (wq,w; + 1)-strategies.
We will have that On N Lp*(Q) < x*, hence cof(On NLp*(Q)) < &.

We can find some countably closed u < & s.t. cof(OnNLp*(Q)). We can then define
a notion of good hull as countably closed hulls that are cofinal in OnNLp*(Q). If
m: M — Y then reverses the Mostowski collapse of a good hull we can look at (Q™, A™)

and again we will have that A’é(ﬂ(a)) is m-realizable and that I@((e) (Q™(a)||6€7) C OF.
Again IAg(’T(a»(-) is to be interpeted as the stack of (k, kT )-iterable hybrid mice.

We then want to conclude that Ag(ﬂ(a)) is fullness preserving. Otherwise we could
find some Ag(ﬂ(a))—suitable pair (R, ) being witness to a counterexample. Now, here

we might a priori have that A = w, but even if « is a successor R would add subsets
to Q™ (a) but we still have 1 e((at1) (Q™(a)) C M. Therefore we can still lift 7 onto R
and proceed as before.

Now we can proceed by looking at P := IA“(QM) as above, and see that A" is regular
in P. -
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We will leave the reader with a few questions:
QUESTION 1: Assume ZF and that all uncountable cardinals are singular. Does there
exist an inner model containing all the reals, satisfying ADT +LSA?

A possible approach might look like this: we form a K°like construction (N, : a <)
on top of P s.t.

e P <IN, and p,(N,) > OnnNP for all a;

e for all good hulls Y with 7 : M — Y being the reverse of the Mostowski collapse,
we have that V) = 771 (N,,) has a fullness preserving r-realization strategy WY
with branch condensation (sometime W) will only be a short tree strategy);

e for all good hulls Y with 7 : M — Y being the reverse of the Mostowski collapse,
for all E on the sequence of Y s.t. crit(E) = dy we have that

‘IJY
(a,A) e E & Tr./\/%,oo(a) e m(A)
q’}—; Y . . . . Y .
where 7\ Nb’ — P is the iteration embedding by W7, 8 being the stage of
B k)

the construction where 7(E) was added;

e let F be on the sequence of N, with crit(F) larger than the supremum of Woodin
cardinals of P, then F is certified by a collapse in HOD x [g].

It has been shown that such a construction can succeed. In our case we see two
problems:

Firstly, assume we have already constructed N, with the above properties. We do not
know that given a good hull Y with 7 : M — Y being the reverse of the Mostowski
collapse M is closed under Ve Usually, the next step in the construction would be to
let N, the stack of all Lp-type premice M over Ny s.t. 771(M) < 1va (NZ) for all
but non-stationarily many good hulls 7 : N — Z.

In our situation we do not know how to guarantee that 7 1 (N} ;) = 1% (NY) for
any good hull 7 : M — Y. This is a problem as the next extender which is derived from
UY and 7 as above does only fit on a full premouse.

The second problem is simply that in our situation a K°like model is not enough. We
need the generic absoluteness that only a proper core model can give us. But we do not
know that A, as above has an (On, On)-iteration strategy.

Conveniently, both of these problems have a commom solution: if we could show that

wr Vﬂﬁfl(n) € M for many good 7 : M — Y, then we would by reflection have that N,
is (k, k)-iterable, but also that it iterates into Q. Then WY becomes definable from A™
as a pullback and hence Ve [ ﬂﬂfl(ﬁ) € M just as in Lemma 6.6.

Unfortunately, we do not yet know how to prove this, but we think that a solution is
not too far off. More difficult (more interesting?) questions would be:
QUESTION 2: Assume ZF and that all uncountable cardinals below O(w) are singular.

Does there exist - possibly in a generic extension - an inner model of AD?
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QUESTION 3: What is the consistency strength of "ZF and there exists a pair of successive
cardinals k, kT which are both singular"?

As we mentioned at the introduction, our methods are not suitable to the above ques-
tions. We will need a much finer approach.
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